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INTRODUCTION 

 

The modern electronic use diverse circuits and devices, work of 

which is based on commutations – instantaneous changes parameters of 

elements, configuration of the circuit or input actions their 

characteristic. Transient processes are arise in the circuit, as result 

signals of definite form are formed and parameters.      

Particularity of this item is analyses of transient processes in 

nonlinear electric circuits, on its contemporary electronic and electrical 

engineering is based. Including nonlinear circuits into context of the 

manual allow to widen boundary educational material into region, where 

known methods are non really or demand principle new approaches to 

the analyses and calculations. Modern of today demands. Theory of two 

ports is effectively used for analyze classical circuit of reactive filters, 

which are widely spread in radiotechnic and radioelecthonic devices. 

Methods of two - port theory are utilize in the circuit with distributed 

parameters, which have the great meaning by development 

nanotechnology, microelectronics, circuit engineering and making 

devices on their principles. 

Study of discipline «Theory of electric and electronic circuit» 

demands solid preparation in sphere mathematics, physics, methods of 

analyze processes in complicated systems. 

Material of a given manual is stated intelligible with sufficiently 

accuracy, which allow students successfully acquire material of manual.       
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1. KLASSICAL METHOD OF TRANSIENT PROCESSES 

ANALYSIS IN THE LINEAR CIRCUIT 

 

1.1. General information abaut transient processes 

 

In electric circuits distinguish modes: 

1) is established, if currents and voltages do not change or change 

periodically; 

2) transitional - in the transition from one steady mode to another. 

The transition process occurs as a result of commutations - jump-

like changes in parameters, configuration, circle structure, or input 

influences. It is believed that switching occurs instantaneously, and the 

transition process continues indefinitely. 

The emergence of transients in circles with reactive elements 

(inductance 𝐿, capacitance 𝐶) is due to the impossibility of 

instantaneous change in the energy accumulated in them (𝑤𝐿 =
𝐿𝑖2

2
, 

𝑤𝐶 =
𝐶𝑢2

2
), which otherwise would correspond to infinite power 

(𝑝 ==
𝑑𝑤

𝑑𝑡
→ ∞). 

In the absence of a group of reactive elements, transient processes 

do not occur (occur instantaneously). 

 

 

1.2. Laws of switching and initial conditions 

 

First switching law: current in inductance can not instantaneously 

change: 

𝑖𝐿(0 −) = 𝑖𝐿(0) = 𝑖𝐿(0 +).       (1.1) 

Second switching law: the voltage on the capacitance can not be 

changed instantaneously: 

𝑢𝐶(0 −) = 𝑢𝐶(0) = 𝑢𝐶(0 +).     (1.2) 

In formulas (1.1) and (1.2): 𝑖𝐿(0 −), 𝑢𝐶(0 −), 𝑖𝐿(0), 𝑢𝐶(0), 
𝑖𝐿(0 +), 𝑢𝐶(0 +) – currents in the inductance and voltages on the 

capacitance immediately before switching, at the moment of switching 

and immediately after switching respectively. 
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The value of currents and voltages at the time 𝑡 = (0+), which 

occurs immediately after switching, are called initial conditions. Initial 

conditions are dependent and independent, zero and nonzero. 

Dependent initial conditions are the currents and voltages that 

change at the moment of switching, for example, the voltage in the 

inductance 𝑢𝐿(0+), and current in the capacitance 𝑖𝐶(0+). 
Independent initial conditions – currents and voltages which do not 

change at the moment of switching, for example, current in inductance 

𝑖𝐿(0+) and the voltage on the capacitance 𝑢𝐶(0+). 
If currents 𝑖(0+) = 0 and voltages 𝑢(0+) = 0, then they are called 

zero initial conditions, and if they aren’t zero 𝑖(0+) ≠ 0, 𝑢(0+) ≠ 0 – 

nonzero. 

  

 

1.3. The general approach to the analysis of transients by the 

classical method 

 

By analysis of transients in electrical circuit by classical method in 

common case consists a system of linear differential acuation of the n-th 

order 

𝑎𝑛
𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+⋯+ 𝑎1

𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 

(1.3) 

= 𝑏𝑚
𝑑𝑚𝑓

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑓

𝑑𝑡𝑚−1
+⋯+ 𝑏1

𝑑𝑓

𝑑𝑡
+ 𝑏0𝑓, 

where 𝑎0, 𝑎1,…𝑎𝑛, 𝑏0, 𝑏1,…𝑏𝑚 – constant coefficients, which are 

determined only by the scheme of the circuits and its parameters; 𝑥, 𝑓 – 

the output (current or voltage) and input (voltage source or current) 

quantities respectively.  

The order of the highest derivative in the equation (1.3) determines 

the order of the circuit. So, for example, if 𝑛 = 1, then this is the circuit 

of the first order, etc. 

Approximately the order of the circuit can be determined by the 

total number of reactive elements of the circuit scimes. 

The solution of the system (1.3) is written as a sum of free 𝑥𝑓𝑟𝑒 and 

forced 𝑥𝑓𝑜𝑟 components 

𝑥 = 𝑥𝑓𝑟𝑒 + 𝑥𝑓𝑜𝑟 .     (1.4) 
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The component 𝑥𝑓𝑟𝑒 corresponds to the processes occurring in the 

circuit due to the difference in the energies of the reactive elements in 

one and the other established operating modes. In real circuits, in the 

presence of losses, free processes are damping, i.e. 

lim𝑡→∞ 𝑥𝑓𝑟𝑒 = 0.    (1.5) 

The free component is defined as the general solution of a 

homogeneous (without the right-hand side) differential equation 

𝑎𝑛
𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+⋯+ 𝑎1

𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 0  (1.6) 

The solution of equation (1.6) has the form 

𝑥𝑓𝑟𝑒 = 𝐴1𝑒
𝑝1𝑡 + 𝐴2𝑒

𝑝2𝑡 +⋯+𝐴𝑛𝑒
𝑝𝑛𝑡 = ∑ 𝐴𝑘𝑒

𝑝𝑘𝑡𝑛
𝑘=1 , (1.7) 

where 𝐴1, 𝐴2,…, 𝐴𝑘,…, 𝐴𝑛 – the integration constants, 𝑝1, 𝑝2,…, 

𝑝𝑘,…, 𝑝𝑛 – the roots of the characteristic equation: 

𝑎𝑛𝑝
𝑛 + 𝑎𝑛−1𝑝

𝑛−1 +⋯+ 𝑎𝑘𝑝
𝑘 +⋯+ 𝑎1𝑝 + 𝑎0 = 0. (1.8) 

The roots 𝑝𝑘 of the characteristic equation (1.8) for passive electric 

circuits are always valid, negative or complex with a negative valid part. 

The imaginary roots correspond to lossless circuits, in which transient 

processes do not attenuate. 

The component 𝑥𝑓𝑜𝑟 in equation (1.4) corresponds to the steady- 

state conditions in the circuit after switching under condition (1.5). It is 

defined as a partial solution of the inhomogeneous (with right-hand 

side) differential equation (1.3). 

 

 

1.4. General procedure for calculating transitional processes by 

the classical method 

  

The calculation of transient processes is carried out in this order. 

1. Make a differential equation for the post-commutation circuit 

with respect to the quantities, that are subject to the laws of 

commutation (current in inductance or voltage on capacitance) 

analogously to equation (1.3). 

2. Find the free component 𝑥𝑓𝑟𝑒  of the transition process. To do 

this, compile and solve the characteristic equation in the same way as 

the equation (1.8). Substitute the roots of the characteristic equation into 

the general solution (1.7) of the homogeneous characteristic equation 

(1.6). 
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3. Find the forced component 𝑥𝑓𝑜𝑟 by calculating the post-

commutation circle in the steady state condіtіons. 

4. Find the desired quantities as the sum of free and forced 

components. 

5. Find independent initial conditions (current in inductance, 

voltage on the capacitance) by calculating to a commutative circuit in 

the steady state condіtіons. 

6. Find a constant of integration from the initial conditions. 

7. Record the final solution of the output differential equation. 

 

 

1.5 Transition processes in first-order circuits 

 

Switching on rC - circuits for constant voltage. Let's analyze the 

process of switching rC - circuits  on a constant voltage (Fig.1.1) 

according to the given calculation procedure. 

 

 
Fig. 1.1 

 

By Kirchoff's law for the voltages for the circuit formed after the 

key 𝐾 is closed, we have 𝑟𝑖 + 𝑢𝐶–𝐸 = 0. 

Because 

𝑖 = 𝐶
𝑑𝑢𝐶
𝑑𝑡

, 

then 

𝑟𝐶
𝑑𝑢𝐶

𝑑𝑡
+ 𝑢𝐶 = 𝐸   (1.9) 

From equation (1.9), taking 
𝑑𝑢𝐶

𝑑𝑡
= 𝑝, 𝐸 = 0, we have the 

characteristic equation: 

𝑟𝐶𝑝 + 1 = 0    (1.10) 
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The second term on the left-hand side of equation (1.9) has a zero-

order derivative, so it is replaced by: 

𝑢𝐶 = 𝑝
0 = 1.    (1.11) 

The root of the characteristic equation 

𝑝 = −
1

𝑟𝐶
= −

1

𝜏
,    (1.12) 

where 𝜏 = 𝑟𝐶 is the time constant. 

Then the free component of the voltage on the capacitance 

𝑢𝑓𝑟𝑒 = 𝐴𝑒
𝑝𝑡 = 𝐴𝑒−

1

𝜏,   (1.13) 

where 𝐴 is integration constant. 

In steady state regime for the aftercommutation circuit 

𝑖 = 0, 𝑢𝐶 = 𝐸, 

that is the forced component 

𝑢𝐶𝑓𝑜𝑟 = 𝐸. 

Now the voltage on the capacitance for any moment of time, that is, 

the general solution of equation (1.9), can be found as the sum of free 

and forced components: 

𝑢𝐶 = 𝑢𝐶𝑓𝑟𝑒 + 𝑢𝐶𝑓𝑜𝑟 = 𝐴𝑒
−
1

τ + 𝐸.  (1.14) 

Independent initial conditions for this circuit are the voltage at the 

capacitance at the moment 𝑡 = (0+), ie immediately after switching . In 

according second commutation  low (1.2) we have 

𝑢𝐶(0 +) = 𝑢𝐶(0 −), 
that is, you can find the voltage 𝑢𝐶(0 −) = 𝑈0 on the capacitance 𝐶, to 

which it will be charged in the pre-commutation circuit. so 

𝑢𝐶(0 +) = 𝑢𝐶(0 −) = 𝑈0.    (1.15) 

We substitute in equation (1.14) 𝑡 = 0 and 𝑢𝐶(0) = 𝑈0 from 

expression (1.15): 

𝑈0 = 𝐴 + 𝐸, 
where 

𝐴 = 𝑈0 − 𝐸.   (1.16) 

The final solution to the equations (1.15), (1.16): 

𝑢𝐶 = (𝑈0 − 𝐸)𝑒
−
1
τ + 𝐸,                           (1.17) 

𝑖𝐶 = 𝐶
𝑑𝑢𝐶
𝑑𝑡

=
𝐸 − 𝑈0
𝑟

𝑒−
1
τ.                         (1.18) 

The following  regimes are possible in Figure 1.1. 

1. Regime at 𝑈0 = 0. Then 
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𝑢𝐶 = 𝐸 (1 − 𝑒
−
1
𝜏) ; 𝑖𝐶 =

𝐸

𝑟
𝑒−

1
𝜏 . 

This is regime of activation of the unchaged capacitor at constant 

voltage 𝐸. The voltage exponentially increases from zero to 𝐸 (fig 1.2, 

a), the current at  t = 0 the jump increases to E/r and then exponentially 

decreases to zero (Fig. 1.2 b). 

 

 
a     b 

Fig.1.2 

 

2. Regime at 𝐸 = 0. Then 

𝑢𝐶 = 𝑈0𝑒
−
1
𝜏;   𝑖𝐶 = −

𝑈0
𝑟
𝑒−

1
𝜏 . 

This is a free regime in the rC- circuit in which the capacitor, 

charged to the voltage 𝑈0, is completely discharged with the 

development of the transition process (Fig. 1.3, a). The current 𝑖𝐶 

changes the direction, the jump increases to the value  −
𝑈0

𝑟   and 

exponentially decreases to zero (fig. 1.3, b). 

3. Regime at 𝐸 > 𝑈0. Then the capacitor is charged from the 

voltage 𝑈0 to 𝐸 according to equation (1.17) (Fig. 1.4 a), the jump 

increases from zero to and decreases to zero according to equation 

(1.18) (Fig. 1.4 b).   

 

 
a     b 

Fig. 1.3 



10 

 
a     b 

Fig. 1.4 

4. Regime at 𝐸 < 𝑈0. Then the capacitor discharges from 𝑈0 to 𝐸 

(Fig. 1.5, a), and the current changes the sign, the jump increases to the 

value 
𝑈0−𝐸

𝑟
  and exponentially reduces to zero (Fig.1.5, b). Here are also 

the equations (1.17) and (1.18) for the voltage on the capacitance and 

current in it. 

 
a     b 

Fig. 1.5 

 

Switching rC-circuits for harmonic voltage. The ratio for 

transients according to the general calculation procedure can be 

obtained the same as in the case of switching rC-circuit to constant 

voltage at 𝐸 = 𝑒(𝑡) = 𝐸𝑚sin(𝜔𝑡 + 𝜑), where ω, φ – the angular 

frequency and the initial phase of  harmonic electromotive force 𝑒(𝑡) 

(EMF). Therefore, 𝑟𝑖 + 𝑢𝐶– 𝑒(𝑡) = 0. Hence 𝑟𝐶
𝑑𝑢𝐶

𝑑𝑡
+ 𝑢𝐶 = 

𝐸𝑚sin(𝜔𝑡 + 𝜑). Here, as in formula (1.10) 𝑟𝐶𝑝 + 1 = 0. Therefore, 

relation (1.10) - (1.13) are correct. 

In the steady state conditions for the post-commutation circuit, the 

forced component is determined by the method of complex amplitudes. 

Maximum circuit current 

𝐼�̇�𝑚.𝑓𝑜𝑟 =
�̇�𝑚
𝑍
=
𝐸𝑚𝑒

𝑗𝜑

𝑟 +
1
𝑗𝜔𝐶

=
𝑗𝜔𝐶𝐸𝑚𝑒

𝑗𝜑

1 + 𝑗𝜔𝑟𝐶
= 

=
𝜔𝐶𝐸𝑚

√1 + (𝜔𝑟𝐶)2
𝑒
𝑗(
𝜋
2
+𝜑−𝑎𝑟𝑐𝑡𝑔 𝜔𝑟𝐶)

. 



11 

Voltage on capacitance 

�̇�𝑐𝑚.𝑓𝑜𝑟 = 𝐼�̇�𝑚.𝑓𝑜𝑟
1

𝑗𝜔𝐶
=
𝐸𝑚𝑒

𝑗𝜑

𝑟 + 𝑗𝜔𝐶
= 

=
𝐸𝑚

√1 + (𝜔𝑟𝐶)2
𝑒𝑗(𝜑−𝑎𝑟𝑐𝑡𝑔 𝜔𝑟𝐶). 

Now 

𝑢𝐶 = 𝑢𝐶𝑓𝑟𝑒 + 𝑢𝐶𝑓𝑜𝑟 = 𝐴𝑒
−
1
τ +

𝐸𝑚

√1 + (𝜔𝑟𝐶)2
× 

× 𝑠𝑖𝑛(𝜔𝑡 + 𝜑 − 𝑎𝑟𝑐𝑡𝑔 𝜔𝑟𝐶) .                         (1.19) 

For initial conditions in a circuit the expression(1.15) is correct.  

With equations (1.15), (1.19) we find at 𝑡 = 0 

𝑈0 = 𝐴 +
𝐸𝑚

√1 + (𝜔𝜏)2
sin(𝜑 − arctg 𝜔τ) , 

where 

𝐴 = 𝑈0 −
𝐸𝑚

√1 + (𝜔𝜏)2
sin(𝜑 − arctg 𝜔𝜏) .             (1.20) 

The final solution of equations (1.19) and (1.20) is: 

𝑢𝐶 = 𝑈0𝑒
−
1
𝜏 +

𝐸𝑚

√1 + (𝜔𝜏)2
×                               (1.21) 

× [sin(𝜔𝑡 + 𝜑 − arctg 𝜔𝑟𝐶) − sin(𝜑 − arctg 𝜔𝜏)𝑒
−
1
𝜏]. 

Here are the following modes: 

Regime at 𝑈0 = 0. This is the regime for switching the unchanged 

capacitor to harmonic voltage. From the equations (1.20) and (1.21) 

𝐴 = −
𝐸𝑚

√1 + (𝜔𝜏)2
sin(𝜑 − arctg 𝜔𝜏) ; 

𝑢𝐶 = −
𝐸𝑚

√1 + (𝜔𝜏)2
× 

× [sin(𝜔𝑡 + 𝜑 − arctg 𝜔𝑟𝐶) − sin(𝜑 − arctg 𝜔𝜏)𝑒−
1
𝜏]. 

Obviously, the transition process is absent, since 𝐴 = 0. The 

transition process takes place with 𝐴 ≠ 0. If 𝜑 =
𝜋

2
+ arctg 𝜔𝜏 then, the 

integration constant became the maximum: 
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𝐴 = −
𝐸𝑚

√1 + (𝜔𝜏)2
 

and then 

𝑢𝐶 = −
𝐸𝑚

√1 + (𝜔𝜏)2
(cosω𝑡 − 𝑒−

1
𝜏). 

The graph of the transition process is shown in Fig.1.6, from which 

it is evident that the voltage on the capacitor can significantly exceed the 

established voltage value. The maximum voltage is due to the half-life 

of the harmonic voltage from the moment of switching. 

 
Fig.1.6 

 

Regime at 𝑈0 ≠ 0. Then at 𝜑 = arctg 𝜔𝜏 we have 𝐴 = 𝑈0. There is 

a transient process appies according to the equation (1.19): 

𝑢𝐶 = 𝑈0𝑒
−
1
𝜏 +

𝐸𝑚

√1 + (𝜔𝜏)2
sin𝜔𝑡. 

Graph of it is images in Fig. 1.7. 

 
Fig.1.7 

 

The time constant and duration of the transition process. The 

values 𝜏 =  𝑟𝐶 or 𝜏 = 𝐿/𝑟 are called time constants. Measured in 

seconds (s). 

If 

(𝑒−
1
𝜏)
,

= −
1

𝜏
(𝑒−

1
𝜏) , 
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and with 𝑡 = 0 

(𝑒−
1
𝜏)
,

= −
1

𝜏
, 

then the component τ is equal to the length under the tangent, conducted 

to the exponential curve (see Fig. 1.2). 

At 𝑡 = 𝜏  

𝑒−
1
𝜏 = 𝑒−1 = 0,367, 

that is τ becomes equal to the time for which the free component is 

changed in 𝑒 times, that is to 0,367 from its value at the beginning of 

the interval. 

The transition process is considered to be practically completed in a 

while 𝑡𝑡𝑟 = (3 − 5) 𝜏. During this time, the exponent reaches (95 -

 99)% its value in the steady state conditions. 

Qualitative analysis of transient processes. For cirсuit of the first 

order, it is convenient to carry out a qualitative analysis of transient 

processes without compiling and solving differential equations, 

determining the currents and voltages on the elements: 

- before the switching circuit with 𝑡 = (0−), 
- aftercommutational circuit with 𝑡 = (0+),  
- circuits in steady state condition 𝑡 → ∞. 

 

Example 1.1. 

Calculate transient process for the circuit fig.E.1.8 by qualitative 

method. 

 
Fig.E.1.8 

 

In according calculation order 

1) 𝑡 = (0−); 𝑖1 = 𝑖2 =
𝐸

𝑟1+𝑟2
; 𝑖𝐶 = 0; 𝑢𝐶(0) =

𝐸𝑟2

𝑟1+𝑟2
; 

2) 𝑡 = (0+); 𝑖1 = 𝑖2 =
𝐸− 𝑢𝐶(0)

𝑟1
=

𝐸

𝑟1+𝑟2
; 𝑖2 = 0;  

𝑢𝐶(0+) = 𝑢𝐶(0−) =
𝐸𝑟2

𝑟1+𝑟2
; 



14 

3) 𝑡 → ∞; 𝑖1 = 𝑖2 = 𝑖𝐶 = 0; 𝑢𝐶 = 𝐸. 

Graphic of  transient process for the currents 𝑖1, 𝑖2, 𝑖𝐶 are shown in 

fig.E.1.9,a,b,c and for voltage uC  - in fig.E.1.9,d. 

 

 
a     b 

 
c     d 

Fig.E.1.9 

 

Problem 1.1.                               

Calculate and analyze  transient processes in a given linear circuit 

of the second order which source of constant EMF(fig. P.1.10) by 

classical method. It’s given: 

𝐸 = 100 V, 𝐿 = 1 mH, 𝐶 = 10 mcF, 𝑟1 = 10 Ohms,  

𝑟2 = 10 Ohms, 𝑟3 = 4 Ohms. 

Find 𝑖1. 

 

Solution. 

1. After commutation circuit is shows in fig.P.1.11. This circuit has two 

nodes. The lows node is taken as basis, is counted from voltage 𝑢𝐶. 

Let’s compile equation in according current Kirchhoff’s low for the 

node 1.  

𝑖 + 𝑖1 + 𝑖2 + 𝑖3 = 0     (P.1.22) 

Here:  

𝑖 =
𝑢𝐶 −  𝐸

𝑟1 + 𝑟2
;   𝑖1 =

𝑢𝐶
𝑟3

;  

𝑖2 =
1

𝐿
∫𝑢𝐶 𝑑𝑡, (as 𝑢𝐶 = 𝑢𝐿 = 𝐿

𝑑𝑖

𝑑𝑡
) ; 𝑖3 = 𝐶

𝑑𝑢𝐶
𝑑𝑡

.      (P.1.23) 
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Fig.P.1.10     Fig. P.1.11 

 

Let’s substitute (P.1.23) into (P.1.22). We get  
𝑢𝐶 −  𝐸

𝑟1 + 𝑟2
+
𝑢𝐶
𝑟3
+
1

𝐿
∫𝑢𝐶 𝑑𝑡 + 𝐶

𝑑𝑢𝐶
𝑑𝑡

= 0.          (P.1.24) 

Differential relatively time 𝑡 gives  

𝑑2𝑢𝐶
𝑑𝑡2

+
𝑟1 + 𝑟2 + 𝑟3
(𝑟1 + 𝑟2)𝑟3𝐶

𝑑𝑢𝐶
𝑑𝑡

+
1

𝐿𝐶
𝑢𝐶 = 0.        (P.1.25) 

Let’s designate 
𝑟1 + 𝑟2 + 𝑟3
(𝑟1 + 𝑟2)𝑟3𝐶

=
1

𝜏
= 2𝛿;   τ =

(𝑟1 + 𝑟2)𝑟3𝐶

𝑟1 + 𝑟2 + 𝑟3
;  

1

√𝐿𝐶
= 𝜔0. 

We receive from (P.1.25) 

𝑑2𝑢𝐶
𝑑𝑡2

+ 2𝛿
𝑑𝑢𝐶
𝑑𝑡

+ 𝜔0
2𝑢𝐶 = 0.                     (P.1.26) 

Equation (P.1.26) is differential equation for after commutation 

circuit in fig. P.1.11 relatively value uC, which obey commutation lows.  

1. Introduce substitution: 
𝑑2𝑢𝐶

𝑑𝑡2
= 𝑝2; 

𝑑𝑢𝐶

𝑑𝑡
= 𝑝1; 𝑢𝐶 = 𝑝

0 = 1, we 

receive characteristically equation 

𝑝2 + 2𝛿𝑝 + 𝜔0
2 = 0.    (P.1.27) 

Ruts of equation (P.1.27)  

𝑝1 = −𝛿 + √𝛿
2 − 𝜔0

2; 𝑝1 = −𝛿 − √𝛿
2 −𝜔0

2.  (P.1.28) 

Free component voltage across capacitance is 

𝑢𝐶𝑓𝑟𝑒 = 𝐴1𝑒
𝑝1𝑡 + 𝐴2𝑒

𝑝2𝑡.      (P.1.29) 

In force regime inductance 𝐿 in (fig.P.11.) shunts capacitance 𝐶. 

Therefore  

𝑢𝐶𝑓𝑜𝑟 = 0       (P.1.30) 

2. Before commutation circuit is shown in fig.P.1.12. In before 

commutation circuit inductance L shunts capacitance C. Therefore 

𝑢𝐶(0) = 0.   (P.1.31) 
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That is initial value voltage across capacitance. 

3. Full voltage across capacitance in according (P.1.29), (P.1.30) 

𝑢𝐶 = 𝑢𝐶𝑓𝑟𝑒 = 𝐴1𝑒
𝑝1𝑡 + 𝐴2𝑒

𝑝2𝑡.    (P.1.32) 

 
Fig. P.1.12 

 

4. For finding integration constants 𝐴1 and 𝐴2 it is necessary to 

supplement (P.1.22) else one equation. Find derivative of 𝑢𝐶 from 

(P.1.32) 
𝑑𝑢𝐶
𝑑𝑡

= 𝐴1𝑝1𝑒
𝑝1𝑡 + 𝐴2𝑝2𝑒

𝑝2𝑡.                     (P.1.33) 

Value  

𝐶
𝑑𝑢𝐶
𝑑𝑡

= 𝑖𝐶 = 𝑖3.                                   (P.1.34) 

If 𝑢𝐶(0) = 0, then at 𝑡 = 0 we get from fig P.1.11 

𝑖1(0) = 0.     (P.1.35) 

It is obvious, according fig. P.1.12 

𝑖2(0−) = 𝑖2(0) = 𝑖2(0+) =
𝐸

𝑟2
.                 (P.1.36) 

For the loop 𝐸, 𝑟1, 𝐶, 𝑟2 in fig. P.1.11 we get.  

−𝐸– 𝑖(𝑟1 + 𝑟2) + 𝑢𝐶 = 0. 

Hence at 𝑡 = 0  

𝑖(0) = −
𝐸 

𝑟1 + 𝑟2
.                                  (P.1.37) 

Then, according (P.1.22) at 𝑡 = 0 take into account (P.1.35), 

(P.1.36), (P.1.37) we get  

𝑖(0) + 𝑖1(0) + 𝑖2(0) + 𝑖3(0) = −
𝐸

𝑟1 + 𝑟2
+
𝐸

𝑟2
+ 𝑖3(0) = 0.  (P.1.38) 

and  

𝑖3(0) =
𝐸

𝑟1 + 𝑟2
−
𝐸

𝑟2
= −

𝐸𝑟1
(𝑟1 + 𝑟2)𝑟2

. 
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Let’s multiply (P.1.22) by 𝐶. Then, using (P.1.34), (P.1.38) at 

𝑡 = 0, we get second equation for definition 𝐴1, 𝐴2 

𝑖3(0) = 𝐶(𝐴1𝑝1 + 𝐴2𝑝2).    (P.1.39) 

Now, using (P.1.131) - (P.1.34), (P.1.39), (P.1.37) we get equation 

system 

{

𝐴1 + 𝐴2 = 0;                                      

𝐶(𝐴1𝑝1 + 𝐴2𝑝2) = −
𝐸𝑟1

(𝑟1 + 𝑟2)𝑟2
.
 

Whence  

𝐴1 =
𝐸𝑟1

𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2
; 

𝐴2 = −
𝐸𝑟1

𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2
. 

Now 

𝑢𝐶 =
𝐸𝑟1

𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2
𝑒𝑝1𝑡 −

𝐸𝑟1
𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2

𝑒𝑝2𝑡 = 

=
𝐸𝑟1

𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡). 

That is so             

𝑖1 =
𝑢𝐶
𝑟3

 

then 

𝑖1 =
𝐸𝑟1

𝐶𝑟3(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)𝑟2
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡).       (P.1.40) 

 

Methodic instruction 

 

It’s necessary account of two kinds transient regimes in electrical 

circuits: steady – state and transient condition by study material 

“Classical method of transient processes analyses”. Currents and 

voltages by steady – state condition aren’t change or periodic change. 

Elements of transient conditions are absent in harmonic current circuits. 

But steady – state condition may be include periodic transient processes 

in circuit of non harmonic current (nonlinear or parametrical circuit). 

Notion “transient condition” envelope any independent transient 

regimes in such circuits. The given section study only one kind of 
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transient process, which take place in all elements of linear electrical 

circuits. 

It’s necessary to considered commutation lows, expound the 

common order of transient processes calculation in according of a given 

algorithm and examples. Study of this material demands repetition the 

methods of mathematical analyses for solution linear differential 

equation.    

Material about analysis and calculation transient processes in 

nonlinear circuit is given in this section. Particularity of nonlinear 

circuits and methods of numerical calculations are considerate in this 

section.      

Literature: [ 1,2,6,8 – 10, 13 – 15] 

 

Questions for self checking 

 

1. Let’s name reasons of transient processes beginning. 

2. Formulate commutation lows. 

3. What are initial conditions? 

4. Let’s name the base points of common order classical method of 

transient processes analyses. 

5. What is order of quality transient processes analyses? 

6. What is integrate method approximation for the transient 

processes in nonlinear circuit? 

7. What is graphic integration method for the transient processes in 

nonlinear circuit calculation? 

8. What is method of phase plane for the transient processes in 

nonlinear circuit calculation? 

9. What is method of successive approximation for the transient 

processes in nonlinear circuit calculation? 

10. What is mating intervals method for the transient processes in 

nonlinear circuit calculation? 

11. What is fined increment method for the transient processes in 

nonlinear circuit calculation? 

12. What is method of state space for the transient processes in 

nonlinear circuit calculation? 

13. What are methods of averaging for the transient processes in 

nonlinear circuit calculation? 
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2. OPERATIONAL METHOD OF TRANSIENT PROCESSES 

ANALYSIS 

 

2.1. Common information about operational method  

 

Transient processes analysis foresees solution differential equations 

of electrical balance in the circuit. For such solution the operational 

method is widely used, which is based on Laplace transforms. By that 

function of real variable 𝑡 replaces by function complex variable 

𝑝 = 𝜎 + 𝑗𝜔. As result differential equations is substitute by algebraic 

equations and after solution reverse transmission is gives real variable 𝑡.   
For the first time this was shown by M. Ye. Vashcenko- 

Zakharchenko of Russia in his monograph, Simvolichedkoe ischislenie i 

prilozenie ego k integrirovaniu lineynykh differentsialnykh uravneniy 

(Simbolic Calculus and Its Application to the Integration of Linear 

Differential Equations) (Kiev, 1862). Independently of him, O. 

Heaviside of England at the end of the century proposed the use of 

operational calculus to the analyses of electromagnetic transients. 

However, Heaviside did not set forth any mathematical principles 

underlying the method. Further progress in the use of the operational 

method has been due to many scientists, among them. V. S. Ignatovsky, 

D. R. Carson, B. van-der Pol, A. M. Efros, A. M. Danilovsky, K. A. 

Krug and A. I. Lurje, to name but few. Vashcenko- Zakharchenko also 

the showed that the operational method could de applied not only to 

ordinary linear differential equations with constant coefficients and their 

systems, but also to linear equations with constant coefficients and 

variable coefficients and to partial differential equations with constant 

coefficients or, in term of electrical engineering, to the transient analysis 

of distributed-parameter circuits. 

The operation method consists in that the given univalued bounded 

function of a real variable, say, time (that is, 𝑓(𝑡)), called the original 

function, satisfying Dirichlet’s conditions over any finite time interval 

and equal to zero at 𝑡 < 0  is transformed to another function, 𝐹(𝑝), of a 

complex frequency 𝑝 = 𝜎 + 𝑗𝜔.  

The new function is called the Laplace transform of the original 

time function.  
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As will be recalled, Dirichlet’s conditions require that over any 

finite interval the function 𝑓(𝑡) should be either continuous or have a 

finite number of maxima and minima  over that interval.  

Transition from 𝑡 to 𝑝 is cold direct Laplace transforms (L – 

laplacian). 

𝐿[𝑓(𝑡)] = 𝐹(𝑝) =  ∫ 𝑓(𝑡)𝑒−𝑝𝑡
∞

0

𝑑𝑡.                        (2.1) 

Reverse transforms from p to t is cold reverse Laplace transforms    

𝐿−1[𝑓(𝑡)] = 𝑓(𝑡) =
1

2π𝑗
∫ 𝐹(𝑝)𝑒−𝑝𝑡𝑑𝑡

σ+𝑗∞

𝜎−𝑗∞

.             (2.2) 

Integral (2.2) is cold Bromwich integral. Function 𝑓(𝑡) is cold 

original, 𝐹(𝑝) is image. 

Let’s consider the some properties of Laplace transforms.   

1. Image of constant 𝐴. In according direct Lap lace transform 

𝐿(𝐴) = ∫ 𝐴𝑒−𝑝𝑡
∞

0

𝑑𝑡 = 𝐴 (−
1

𝑝
)∫ 𝑑(𝑒−𝑝𝑡)

∞

0

=
𝐴

𝑝
. 

That is way 

𝐿(𝐴) =
𝐴

𝑝
 and 𝐿(1) =

1

𝑝
.   (2.3)  

2. Multiplication of function 𝑓(𝑡) by constant 𝐴. In according 

direct Laplace transform we get        

𝐿[𝐴𝑓(𝑡)] = ∫ 𝐴 𝑓(𝑡)𝑒−𝑝𝑡
∞

0

𝑑𝑡 = 𝐴∫ 𝑓(𝑡)𝑒−𝑝𝑡
∞

0

𝑑𝑡 = 𝐴𝐹(𝑝). 

That is way  

𝐿[𝐴𝑓(𝑡)] = 𝐴𝐹(𝑝) 
3. Linearity  

𝐿[𝑓1(𝑡) ∓  𝑓2(𝑡)] = ∫ 𝑓1(𝑡)𝑒
−𝑝𝑡

∞

0

𝑑𝑡 ± ∫ 𝑓2(𝑡)𝑒
−𝑝𝑡

∞

0

𝑑𝑡 = 

= 𝐹1(𝑝) ±  𝐹2(𝑝), 
than 

𝐿[𝑓1(𝑡) ∓  𝑓2(𝑡)] = 𝐹1(𝑝) ±  𝐹2(𝑝). 
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4. Image of derivative  

𝐿 {
𝑑[𝑓(𝑡)]

𝑑𝑡
} = ∫

{𝑑[𝑓(𝑡)]

𝑑𝑡

∞

0

 𝑒−𝑝𝑡𝑑𝑡 = ∫ 𝑒−𝑝𝑡
∞

0

𝑑[𝑓(𝑡)].     (2.4)  

For integration by parts we have 

∫𝑢𝑑𝑣 =  𝑢𝑣 − ∫𝑣𝑑𝑢 .                              (2.5)  

Here 𝑣 = 𝑓(𝑡), 𝑑𝑢 = (𝑑𝑒−𝑝𝑡), than 

𝐿 {
𝑑[𝑓(𝑡)]

𝑑𝑡
} = {𝑒−𝑝𝑡𝑓(𝑡)}|0

∞ −∫ 𝑓(𝑡)𝑑(𝑒−𝑝𝑡)

∞

0

= 

= − 𝑓(0) − ∫ 𝑓(𝑡)𝑒−𝑝𝑡(−𝑝)𝑑𝑡

∞

0

= 

= − 𝑓(0) –  𝑝∫ 𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡

∞

0

 = − 𝑓(0) + 𝑝𝐹(𝑝).   

That is way 

𝐿 {
𝑑[𝑓(𝑡)]

𝑑𝑡
} = 𝑝𝐹(𝑝)– 𝑓(0) 

It’s evidence  

𝐿 {
𝑑2[𝑓(𝑡)]

𝑑𝑡2
} = 𝑝2𝐹(𝑝)– 𝑓’(0)–𝑓(0). 

That is way, image of derivative of the any order from time 

function is equal to product operator p to the degree of derivative order 

by image of time function which precision about integration constant. 

5. Image of integral ∫ 𝑓(𝑡)𝑑𝑡.
𝑡

0
 Accounting expression (2.1), we get  

𝐿 [∫𝑓(𝑡)𝑑𝑡

𝑡

0

] = ∫ [ ∫𝑓(𝑡)𝑑𝑡

𝑡

0

] 𝑒−𝑝𝑡𝑑𝑡 =

∞

0

  

(2.6) 

= −
1

𝑝
∫ [ ∫𝑓(𝑡)𝑑𝑡

𝑡

0

] 𝑑(𝑒−𝑝𝑡).  

∞

0

 

Let’s designation for integration by part 
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∫𝑓(𝑡)𝑑𝑡

𝑡

0

= 𝑢,       𝑑(𝑒−𝑝𝑡) = 𝑑𝑣. 

As 𝑣 = 𝑒−𝑝𝑡, 𝑑𝑢 = 𝑓(𝑡)𝑑𝑡. 
Then from expressions (2.5), (2.6) we get  

∫𝑓(𝑡)𝑑𝑡

𝑡

0

 = − 
1

𝑝
[ ∫ 𝑓(𝑡)𝑑𝑡

𝑡  

0

𝑒−𝑝𝑡 |
∞

0
] +

1

𝑝
∫ 𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡

∞

0

= 

=
1

𝑝
∫ 𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡

∞

0

=
𝐹(𝑝)

𝑝
. 

That is way 

𝐿 [∫𝑓(𝑡)𝑑𝑡

𝑡

0

] =
𝐹(𝑝)

𝑝
. 

It’s evidence  

𝐿 [∬𝑓(𝑡)𝑑𝑡 

𝑡

0

] =
𝐹(𝑝)

𝑝2
. 

That is way, image of integral of the any order from time function 

is equal to time function divisible by operator 𝑝 to degree of integral 

multiple. 

6. Phase shift of original.  

Function 𝑓(𝑡 − 𝜏) is named time shift relatively function 𝑓(𝑡) at 

interval τ (Fig. 2.1). Property of phase shift is comfortable used by 

receiving image of function, which are given different expressions 

(piece – continuous function), for example, for analysis the 

complicated form signals passing through a linear electric circuit.   

If 𝐿[𝑓(𝑡)] = 𝐹(𝑝), then we have 

𝐿[𝑓(𝑡 − 𝜏)] = ∫ 𝑓(𝑡 − 𝜏)𝑒−𝑝𝑡𝑑𝑡

∞

0

= 

= ∫ 𝑓(𝑡 − 𝜏) 𝑒−𝑝(𝑡− 𝜏)𝑒−𝑝τ𝑑(𝑡 −

∞

0

𝜏) = 
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= 𝑒−𝑝τ∫ 𝑓(𝑡 −  𝜏)  𝑒−𝑝(𝑡− 𝜏)   𝑑(𝑡 −

∞

0

𝜏) = 𝑒−𝑝𝜏𝐹(𝑝). 

That is way  

𝐿[𝑓(𝑡 − 𝜏)] = 𝑒−𝑝𝜏𝐹(𝑝)    (2.7) 

 

 
Fig. 2.1 

 

7. Shift. 

Function 𝑓(𝑡)𝑒−𝛼𝑡 is cold displacement relatively function 𝑓(𝑡) at 

angle α. In according (2.1) we get
 

𝐿[𝑓(𝑡)𝑒−α𝑡] = ∫ 𝑓(𝑡)𝑒−α𝑡𝑒−𝑝𝑡𝑑𝑡

∞

0

= ∫ 𝑓(𝑡)𝑒−(𝑝+α)𝑡𝑑𝑡

∞

0

= 𝐹(𝑝 + α) 

That is way rule of shift 

𝐿[𝑓(𝑡)𝑒±𝛼𝑡] = 𝐹(𝑝 ∓  𝛼).    (2.8) 

That is way multiplication function 𝑓(𝑡) by 𝑒±α𝑡 correspond 

substitution in image 𝑝 for 𝑝 ∓ α. 
 

8. Similarity (changing of scale independent variable).  

Let’s a is any positive number. Then, if 𝐿[𝑓(𝑡)] = 𝐹(𝑝) we get 

𝐿[𝑓(𝑎𝑡)] = ∫ 𝑒−𝑝𝑡
∞

0

𝑓(𝑎𝑡)𝑑𝑡. 

For integration by parts we designation: 𝑎𝑡 = 𝑢, 𝑑𝑡 =
𝑑𝑢

𝑎
. Then 

𝐿[𝑓(𝑎𝑡)] =
1

𝑎
∫ 𝑒−

𝑝
𝑎
𝑢

∞

0

𝑓(𝑢)𝑑𝑢 =
1

𝑎
𝐹 (
𝑝

𝑎
). 

Analogically 
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𝐿(sin 𝑡) = ∫ 𝑒−𝑝𝑡
∞

0

sin 𝑡𝑑𝑡 =
𝑒−𝑝𝑡(−𝑝sin 𝑡 − cos 𝑡)

𝑝2 +  1
|
∞

0

  =
𝜔

𝑝2 +  1
;  

𝐿(cos 𝑡) = ∫ 𝑒−𝑝𝑡
∞

0

cos 𝑡𝑑𝑡 =
𝑒−𝑝𝑡(sin 𝑡 −  𝑝 cos 𝑡)

𝑝2 +  1
|
∞

0

=  
𝑝

𝑝2 +  1
; 

or                                                                                             

𝐿(sin 𝜔𝑡) =
𝜔

𝑝2  + 𝜔2
;    𝐿(cos 𝜔𝑡) =

𝑝

𝑝2  + 𝜔2
. 

Using properties of phase shift and similarity, we get images of 

functions sin(𝜔𝑡 − 𝜑) and cos(𝜔𝑡 − 𝜑). As  

𝐿[sin(𝜔𝑡 − 𝜑)] = 𝐿[sin𝜔𝑡 cosφ – cos𝜔𝑡 sin𝜑] = 

= cos𝜑
𝜔

𝑝2  + 𝜔2
− sinφ 

𝑝

𝑝2  + 𝜔2
; 

𝐿[cos(𝜔𝑡 − 𝜑)] = 𝐿[cos𝜔𝑡 cos𝜑 + sin𝜔𝑡 sin𝜑] = 

= cos𝜑
𝑝

𝑝2  + 𝜔2
 + sin𝜑

𝜔

𝑝2  + 𝜔2
. 

9. Convolution of original (multiplication of images). 

Convolution of continuous functions 𝑓(𝑡) and 𝜑(𝑡) is named 

function 𝜓(𝑡), in according equality 

𝜓(𝑡) = 𝑓(𝑡) ∗ 𝜑(𝑡) = ∫𝑓(𝜏)

𝑡

0

𝜑(𝑡 −  𝜏)𝑑𝜏.  

Convolution has the same properties as multiplication: 

a) commutativity: 𝑓 ∗ 𝜑 = 𝜑 ∗ 𝑓; 

b) associativity: (𝑓 ∗ 𝜑) ∗ 𝜓 = 𝑓 ∗ (𝜑 ∗ 𝜓); 
c) reflexivity: (𝑓 + 𝜑) ∗ 𝜓 = 𝑓 ∗ 𝜓 + 𝜑 ∗ 𝜓.  

That is way, convolution of function gives the same result 

independently on convolution order. 

Convolution theorem: multiplication of two function images is 

accordance image of this function convolution. 

Convolution of functions has graphic interpretation. Convolution 

functions of  𝑓(𝑡) with 𝜑(𝑡) can by contribution as production of more 

than two cofactors. Than convolution property is used successive to in 

pairs rally around cofactors. It is shown convolution property grouping 

can by perform in any order.  
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Convolution functions of  𝑓(𝑡) with 𝜑(𝑡) can by represent 

graphically (fig. 2.2).  

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Fig. 2.2 
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Fig.2.2,a shows convolution of two functions  𝑓(𝑡) and φ(𝑡),  in 

fig.2.2,b – functions  𝑓(𝜏) and 𝜑(𝜏) after substitution of a variable 𝑡 to 

τ. Functions 𝑓(− 𝜏), 𝜑(− 𝜏) are show  in Fig. 2.2,c. They are mirror 

reflection of functions   𝑓(τ) and φ(τ) relatively ordinate axes. Shift of 

functions 𝑓(− 𝜏), 𝜑(− 𝜏) to the right on value t is shown in Fig.2.2,d.  

Product of functions 𝑓(𝑡 − 𝜏)  ∗  φ(𝜏) and 𝑓(𝜏) ∗  𝜑(𝑡 − 𝜏) are 

shown in Fig.2.2,e. Integration without from 0 to τ gives areas, which is 

shaded in fig. 2.9, e. They areas are equal to convolution 

functions 𝑓(𝑡) ∗  𝜑(𝑡). Dependence convolution on time 𝑡 is shown in 

fig.2.2,f. From fig.2.9,e,f it is shown: Integrals of productions 𝑓(𝑡 −
𝜏)  ∗  𝜑(τ) and 𝑓(𝜏) ∗  𝜑(𝑡 − 𝜏) are equal. 

 

 

2.2. The decomposition formula 

 

Using the decomposition formula, you can find the original 𝑓(𝑡) of 

the known image 𝐹(𝑝) 

𝐹(𝑝) =
𝐹1(𝑝)

𝐹2(𝑝)
=
𝑏𝑚𝑝

𝑚 + 𝑏𝑚−1𝑝
𝑚−1 +⋯+ 𝑏0

𝑎𝑛𝑝
𝑛 + 𝑎𝑛−1𝑝

𝑛−1 +⋯+ 𝑎0
             (2.9) 

where 𝐹1(𝑝), 𝐹2(𝑝) are polynomials of whole degrees 𝑝 (𝑚 and 𝑛) at 

the same time 𝑚 <  𝑛. The coefficients 𝑎𝑘, 𝑏𝑘 are valid and are 

determined only by the parameters of the circuit. Polynomials 𝐹1(𝑝), 
𝐹2(𝑝) haven’t common roots, that is, the fraction (2.9) is non-

cancellable. 

Eхpansion the fraction (2.9) into prime fractions. If 𝑝1, 𝑝2, …, 𝑝𝑛 – 

different roots of the polynomial F2(p), then 

𝐹1(𝑝)

𝐹2(𝑝)
=

𝐴1
𝑝 − 𝑝1

+
𝐴2

𝑝 − 𝑝2
+⋯+

𝐴𝑛
𝑝 − 𝑝𝑛

=∑
𝐴𝑘

𝑝 − 𝑝𝑘

𝑛

𝑘=1

.       (2.10) 

Determine the coefficients of decomposition 𝐴1, 𝐴2, …, 𝐴𝑛. 

Multiply fraction (2.10) by 𝑝 − 𝑝𝑘: 

(𝑝 − 𝑝𝑘)∑
𝐴𝑘

𝑝 − 𝑝𝑘

𝑛

𝑘=1

=
𝐹1(𝑝)(𝑝 − 𝑝𝑘)

𝐹2(𝑝)
.                         (2.11) 

We are heading 𝑝 → 𝑝𝑘. Because 𝑝𝑘 is the root of the 𝐹2(𝑝), then 

lim
𝑝→𝑝𝑘

𝑝 − 𝑝𝑘
𝐹2(𝑝)

=
0

0
.                                    (2.12) 
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We reveal the (2.12) by the Lopital rule: 

lim
𝑝→𝑝𝑘

(𝑝 − 𝑝𝑘)′

𝐹2
′(𝑝)

=
1

𝐹2
′(𝑝𝑘)

.                           (2.13) 

Left part in expression (2.11) 

lim
𝑝→𝑝𝑘

(𝑝 − 𝑝𝑘)∑
𝐴𝑘

𝑝 − 𝑝𝑘

𝑛

𝑘=1

= 𝐴𝑘 ,                      (2.14) 

that is, according to expressions (2.11), (2.13) and (2.14) at 𝑝 → 𝑝𝑘 

𝐴𝑘 =
𝐹1(𝑝𝑘)

𝐹2
′(𝑝𝑘)

.                                       (2.15) 

Then from equation (2.10) given (2.15) we have 

𝐹1(𝑝)

𝐹2(𝑝)
= ∑

𝐹1(𝑝𝑘)

𝐹2
′(𝑝𝑘)(𝑝 − 𝑝𝑘)

𝑛

𝑘=1

.                     (2.16) 

Determine the original from the image (2.16). Since 𝐹1(𝑝𝑘) and 

𝐹2
′(𝑝𝑘) are steel quantities, it is necessary to find the original expression 
1

𝑝−𝑝𝑘
. Given equations (2.3) and (2.8), we have 

1

𝑝 − 𝑝𝑘
= 𝑒𝑝𝑘𝑡. 

So, finally 

𝐹(𝑝) =
𝐹1(𝑝)

𝐹2(𝑝)
≑ ∑

𝐹1(𝑝𝑘)

𝐹2
′(𝑝𝑘)

𝑛

𝑘=1

𝑒𝑝𝑘𝑡 = 𝑓(𝑡).                (2.17) 

Expression (2.17) is a decomposition formula. If  there are zero 

roots among the roots of a polynomial 𝐹2(𝑝), that is 

𝐹2(𝑝) = 𝑝𝐹3(𝑝), 
where the polynomial 𝐹3(𝑝), hasn’t zero roots, then by the formula 

(2.17) we obtain: 

𝐹(𝑝) =
𝐹1(𝑝)

𝐹2(𝑝)
≑

𝐹1(0)

{
𝑑
𝑑𝑝
[𝑝𝐹3(𝑝)]}

𝑝=0

+∑
𝐹1(𝑝𝑘)

{
𝑑
𝑑𝑝
[𝑝𝐹3(𝑝)]}

𝑝=𝑝𝑘

𝑛

𝑘=1

𝑒𝑝𝑘𝑡 = 

(2.18) 

=
𝐹1(0)

𝐹3(0)
+∑

𝐹1(𝑝𝑘)

𝑝𝑘𝐹3
′(𝑝𝑘)

𝑛

𝑘=1

𝑒𝑝𝑘𝑡 = 𝑓(𝑡). 

It takes into account that 
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{
𝑑

𝑑𝑝
[𝑝𝐹3(𝑝)]}

𝑝=0

= [𝐹3(𝑝) + 𝑝𝐹3
′(𝑝)]𝑝=0 = 𝐹3(0) 

and 

𝐹3(𝑝𝑘) = 0. 
The decomposition formula (2.17) can be written in general form 

𝑓(𝑡) =
1

2𝜋𝑗
∫

𝐹1(𝑝)

𝐹2(𝑝)

𝜎+𝑗∞

𝜎−𝑗∞

𝑒𝑝𝑡𝑑𝑝 ≈ ∑Res [
𝐹1(𝑝)

𝐹2(𝑝)
𝑒𝑝𝑡]

𝑝=𝑝𝑘

𝑛

𝑘=1

, 

where the excess Res is defined as 

Res [
𝐹1(𝑝)

𝐹2(𝑝)
𝑒𝑝𝑡]

𝑝=𝑝𝑘

=
𝐹1(𝑝𝑘)

𝐹2
′(𝑝𝑘)

𝑒𝑝𝑘𝑡. 

In the table. 2.1 the originals of the some features and their Laplace 

images are showed. 

In the table. 2.1 shows the originals of some features and their 

Laplace images. 

Table 2.1 

Original Image 

1(𝑡) 
1

𝑝
 

𝛿(𝑡) 1 

𝑒±𝑎𝑡 
1

𝑝 + 𝑎
 

1 − 𝑒−𝑎𝑡 
𝑎

𝑝(𝑝 + 𝑎)
 

1

𝑏 − 𝑎
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡) 

1

(𝑝 + 𝑎)(𝑝 + 𝑏)
 

cos(𝜔𝑡 + 𝜓) 
𝑝 cos𝜓 − 𝜔 sin𝜓

𝑝2 +𝜔2
 

sin(𝜔𝑡 + 𝜓) 
𝑝 cos𝜓 + 𝜔 sin𝜓

𝑝2 +𝜔2
 

 

As already noted, the decomposition formula applies only when 

𝐹2
′(𝑝𝑘) it hasn’t multiple roots. Indeed, for example, the image 

𝐹(𝑝) =
𝐹1(𝑝)

𝐹2(𝑝)
=

1

(𝑝 + 𝑎)2
,                                (2.19) 
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the denominator of which 𝐹2(𝑝), has two multiple roots 𝑝1 = 𝑝2 =
−𝑎, by the formula (2.17) gives for the original expression: 

𝑓(𝑡) =
1

0
𝑒−𝑎𝑡 +

1

0
𝑒−𝑎𝑡 → ∞.                              (2.20) 

However, from the table 2.1 the original image (2.19) can be 

obtained from the ratio 
1

(𝑝 + 𝑎)(𝑝 + 𝑏)
=

1

𝑏 − 𝑎
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡) 

by border crossing 𝑏 → 𝑎: 

lim
𝑏→𝑎

1

(𝑝 + 𝑎)(𝑝 + 𝑏)
=

1

(𝑝 + 𝑎)2
= lim

𝑏→𝑎

1

𝑏 − 𝑎
(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡) = 

(2.21) 

lim
𝑏→𝑎

𝑑
𝑑𝑎 (

𝑒−𝑎𝑡 − 𝑒−𝑏𝑡)

𝑑
𝑑𝑎
(𝑏 − 𝑎)

= 𝑡𝑒−𝑎𝑡, 

that is, the result is incorrect. 

The original image for the multiple roots of the denominator can be 

found by the convolution property (Borel's theorem), the essence of 

which is. Let the image 𝐹(𝑝), be presented as a product 

𝐹(𝑝) = 𝐹1(𝑝)𝐹2(𝑝).                                         (2.22) 
By direct Laplace transform (2.1) 

𝐹2(𝑝) = ∫ 𝑓2(𝜏)

∞

0

𝑒−𝑝𝜏𝑑𝜏,                                 (2.23) 

so 

𝐹(𝑝) = 𝐹1(𝑝)𝐹2(𝑝) = 𝐹1(𝑝)∫ 𝑓2(𝜏)

∞

0

𝑒−𝑝𝜏𝑑𝜏 = 

∫ 𝑒−𝑝𝜏𝐹1(𝑝)𝑓2(𝜏)

∞

0

𝑑𝜏.                                (2.24) 

By delay property (2.7) 

𝑒−𝑝𝜏𝐹1(𝑝) = 𝑓1(𝑡 − 𝜏). 
Then the original image (2.7) 
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𝐹(𝑝) = 𝑓(𝑡) = ∫𝑓1(𝑡 − 𝜏)𝑓2(𝜏)𝑑𝜏.

𝑡

0

                         (2.25) 

The formula (2.25) is called the convolution formula. Obviously, 

the functions 𝐹1(𝑝) та 𝐹2(𝑝) are equal, therefore, performing similarly 

the transformation (2.23) for 𝐹1(𝑝), we get 

𝐹(𝑝) = 𝑓(𝑡) = ∫𝑓1(𝜏)𝑓2(𝑡 − 𝜏)𝑑𝜏.

𝑡

0

                        (2.26) 

Let’s determine the original image (2.19) with the convolution 

formula (2.25) with taking into account that 

𝐹(𝑝) = 𝐹1(𝑝)𝐹2(𝑝) =
1

𝑝 + 𝑎
 
1

𝑝 + 𝑎
 . 

Given the properties of the shift operation (2.8)) 
1

𝑝 + 𝑎
= 𝑒−𝑎𝑡 = 𝑓1(𝑡) = 𝑓2(𝑡) 

by the formula (2.25) we have 

𝑓(𝑡) = ∫𝑒−𝑎(𝑡−𝜏)𝑒−𝑎𝜏𝑑𝜏 = 𝑒−𝑎𝑡∫𝑑𝜏 = 𝑒−𝑎𝑡𝜏 |
𝑡

0
= 𝑡𝑒−𝑎𝑡,

𝑡

0

𝑡

0

 

which coincides with the relation (2.21). 

 

 

2.3. Operational substitution circuit of the basic circuit 

elements 

 

Active resistance. For active electric resistance 𝑟 we can write 

𝑢𝑟 = 𝑖𝑟𝑟 ,     (2.27) 

where 𝑖𝑟, 𝑢𝑟 – instantaneous values of electric current and voltage 

(Fig.2.2,a). 

 
a     b 

Fig. 2.2 
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And in operational form it is written as 

𝑢𝑟 ≑ 𝑈𝑟(𝑝), 𝑖𝑟 ≑ 𝐼𝑟(𝑝).                           (2.28) 

So, from expression (2.27) we get 

𝑈𝑟(𝑝) = 𝐼𝑟(𝑝)𝑟 . 

The second property of the Laplace transform is used here - the 

multiplication of the function 𝑓(𝑡) on a constant value. 

Thus, the operator image of the resistance 𝑟 is the same resistance 𝑟 

(Fig.2.2,b). 

Inductance. For the inductance 𝐿 (Fig. 2.2,a) the ratio between the 

instantaneous values of current 𝑖𝐿 and the voltage 𝑢𝐿 can be written as 

𝑢𝐿 = 𝐿
𝑑𝑖𝐿
𝑑𝑡
. 

 
a    b 

Fig. 2.3 

 

In the operator form it can be written similar to the ratio (2.28) as 

the expression  

𝑢𝐿 ≑ 𝑈𝐿(𝑝),    𝑖𝐿 ≑ 𝐼𝐿(𝑝). 
Using the fourth property of Laplace transform (the image of the 

derivative), we find 

𝑈𝐿(𝑝) = 𝑝𝐿𝐼𝐿(𝑝) − 𝐿𝑖𝐿(0). 
Here for a constant value 𝐿 the second property of Laplace 

transform (multiplication of the function 𝑓(𝑡) on the constant value) is 

taken into account also. 

Thus, the operator image of the inductance 𝐿 is a serial connection 

of the operator resistance 𝑝𝐿 and the voltage source, which 

electromotive force (e.m.f.) is 𝐿𝑖𝐿(0) and which in the direction 

coincides with the conditionally positive current direction (Fig .2.3,b). 

Capacitance. For capacitance (Fig. 2.4,a) it is possible to write the 

relation between instantaneous values of current 𝑖𝐶 and voltage 𝑢𝐶. 

𝑖𝐶 = 𝐶
𝑑𝑢𝐶
𝑑𝑡

, 
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𝑢𝐶 =
1

С
∫ 𝑖𝐶𝑑𝑡 =

1

𝐶
∫ 𝑖𝐶𝑑𝑡 +

1

С
∫ 𝑖𝐶𝑑𝑡 =

𝑡

0

0

−∞

𝑡

−∞

𝑈𝐶(0) +
1

𝐶
∫ 𝑖𝐶𝑑𝑡

𝑡

0

. 

 

 
a    b 

Fig. 2.4 

 

In operational form it is written as 

𝑢𝐶 ≑ 𝑈𝐶(𝑝),    𝑖𝐶 ≑ 𝐼𝐶(𝑝). 
Using the fifth property of Laplace transform (the image of the 

integral) we find 

𝑢𝐶(𝑝) =
𝑢𝑐(0)

𝑝
+
1

𝑝𝐶
𝐼𝐶(𝑝). 

Here for the constant value 1/𝐶, the second property of Laplace 

transform (multiplication of the function 𝑓(𝑡) on the constant value) is 

applied, and for constant value 𝑢𝐶(0) the first property of Laplace 

transform (image of constant value) is used. And for the sum of terms in 

expression (2.24) the third property of Laplace transform (linearity) is 

used. 

Consequently, the operator image of the capacitance C is the serial 

connection of the operator resistance 
1

𝑝𝐶
 and the voltage source which 

e.m.f. is equal to 
𝑢𝐶(0)

𝑝
 and is in the opposite direction to the 

conventionally positive current direction. 

Thus, by all the elements of the electric circuit replacing with their 

operator images, one can obtain an equivalent operator scheme (EOS) of 

the circuit. So, for the circuit shown in Fig. 2.5,a we have such EOCS 

(Fig. 2.5,b). 
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2.4. Ohm’s and Kirchhoff’s lows in operational form   

 

Ohm’s low. For the scheme shown in the Fig. 2.5,a we can write 

according to the Ohm's law, where 𝑒 is e.m.f. of voltage source  

𝑢𝑟 + 𝑢𝐿 + 𝑢𝐶 = 𝑒 
or                                   

𝑖𝑟 + 𝐿
𝑑𝑖

𝑑𝑡
+
1

𝐶
∫ 𝑖𝑑𝑡 = 𝑒.

𝑡

−∞

 

 

 
a    b 

Fig. 2.5 

 

These equations may be represented in operational form (Fig.2.5,b) 

as 

𝑟𝐼(𝑝) = 𝑝𝐿𝐼(𝑝) − 𝐿𝑖𝐿(0) +
1

𝑝𝐶
𝐼(𝑝) +

𝑢𝑐(0)

𝑝
= 𝐸(𝑝) 

or 

(𝑟 + 𝑝𝐿 +
1

𝑝𝐶
) 𝐼(𝑝) = 𝐸(𝑝) + 𝐿𝑖𝐿(0) −

𝑢𝑐(0)

𝑝
, 

or 

𝑍(𝑝)𝐼(𝑝) = 𝐸𝑒(𝑝),      𝐼(𝑝) =
𝐸𝑒(𝑝)

𝑍(𝑝)
.                 (2.29) 

Where 

𝑍(𝑝) = 𝑟 + 𝑝𝐿 +
1

𝑝𝐶
 – operator representation of electric resistance 

of circuit; 

𝐸𝑒(𝑝) = 𝐸𝑝(0) + 𝐿𝑖𝐿(0) −
𝑢𝑐(0)

𝑝
 – operator representation of 

equivalent e.m.f. 

Expressions (2.29) are represented the Ohm’s law in operator form. 
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Kirchhoff’s lows. Using the property of linearity, one can write 

Kirchoff's law in image representation for currents and Kirchoff's law in 

image representation for voltagges. 

Kirchoff's law for currents is 

∑𝑖𝑘 = 0 ≑

𝑘

∑𝐼𝑘(𝑝) = 0 .

𝑘

 

Kirchoff's law for voltage is 

∑𝑢𝑘 = 0 ≑

𝑘

∑𝑈𝑘(𝑝) = 0 .

𝑘

 

 

 

2.5. Transient processes analysis with equivalent operation 

circuits 

 

The general procedure for transient processes  calculation with 

using the EOS is following: 

1) to determine the independent initial conditions (current in the 

inductance, voltage in the capacitor) with calculation of the pre- 
commutation circle; 

2) to make EOS according to the rules considered for the post-

commutation circle; 

3) to calculate EOS with any method of electric circuits calculation; 

4) to find the originals of the searching values according to the 

resulting images with using the decomposition formula or the Table of 

originals and images. 

 

Example 2.1.  

To calculate the transient process with switch 𝐾 closure in the 

circuit (Fig. 2.6,a) according to given EOS – method. 

 
a    b 

Fig. 2.6 
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Solution.       

1. Independent initial conditions in before commutation conditions 

(switching (K is off) are define in according expression 

𝑖2(0) = 𝑖𝐿(0) =
𝐸

𝑟1 + 𝑟2
 

2. Equivalent operation circuit for after commutation circuit 

(switching 𝐾 is on) is shown in fig. 2.6, b. 

In according voltage Kirchhoff low lets rout down system of node 

equation for nodes 1 and 2 can be rout down in form     

[

𝑔1 + 𝑔2 + 𝑔3 −𝑔2

−𝑔2 𝑔2 +
1

𝑝𝐿
] [
𝑈1(𝑝)
𝑈2(𝑝)

] =

[
 
 
 

𝐸1
𝑝
𝑔1

−𝐿𝑖2(0)
1

𝑝𝐿]
 
 
 

 ,      (2.30) 

where 

𝑔1 =
1

𝑟1
, 𝑔2 =

1

𝑟2
, 𝑔3 =

1

𝑟3
 . 

3. From equation system (2.30) we get inductance voltage 𝑈2(𝑝):      

𝑈2(𝑝) =
∆2
Δ

.                                       (2.31) 

Its evidence 

Δ = |

𝑔1 + 𝑔2 + 𝑔3 −𝑔2

−𝑔2 𝑔2 +
1

𝑝𝐿
| = (𝑔1 + 𝑔2 + 𝑔3) (𝑔2 +

1

𝑝𝐿
) − 𝑔2

2 =   

                                                                                

 

(2.32) 

=
𝑔1 + 𝑔2 + 𝑔3 + (𝑔1 + 𝑔3)𝑔2𝑝𝐿

𝑝𝐿
; 

∆2= ||
𝑔1 + 𝑔2 + 𝑔3

𝐸1
𝑝
𝑔1

−𝑔2 −𝐿𝑖2(0)
1

𝑝𝐿

|| = −(𝑔1 + 𝑔2 + 𝑔3)𝐿𝑖2(0)
1

𝑝𝐿
+ 

 (2.33) 

+
𝐸1
𝑝
𝑔1𝑔2 =

𝐸𝑔1𝑔2 − (𝑔1 + 𝑔2 + 𝑔3)𝑖2(0)

𝑝
 

Now 
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𝑈2(𝑝) =
𝐸𝑔1𝑔2 − (𝑔1 + 𝑔2 + 𝑔3)𝑖2(0)

(𝑔1 + 𝑔2 + 𝑔3)
1
𝐿 + (𝑔1 + 𝑔3)𝑔2𝑝

=  

=
𝑏0

𝑎1𝑝 + 𝑎0
=
𝑏0
𝑎1
∙

1

𝑝 +
𝑎0
𝑎1

 , 

where 

𝑎0 = (𝑔1 + 𝑔2 + 𝑔3)
1

𝐿
 ; 

𝑎1 = (𝑔1 + 𝑔3)𝑔2; 

𝑏0 = 𝐸𝑥𝑔1𝑔2 − (𝑔1 + 𝑔2 + 𝑔3)𝑖2(0).  
We get expression for original from the Table 2.1 

𝑈2(𝑝) ≑ 𝑢2(𝑡) = 𝑢𝐿 =
𝑏0
𝑎1
𝑒
−
𝑎0
𝑎1
𝑟
. 

Here the first property of Laplace transform is used (image of 

constant value), second property (multiplication by a constant value) 

and seven property (argument shift) of Laplace transform are used also. 

Another values in scheme of Fig. 2.6,a can be find analogically. 

 

 

2.6. Transient processes at turn on a non-branched circle of 

second order on a constant voltage 

 

Let’s analyze the process of switching the 𝑟𝐿𝐶-circle on a constant 

voltage (Fig. 7.2,a) according to the common calculation procedure. Let 

the capacitor 𝐶 is charged up to the voltage 𝑢𝑐(0) in the pre-

commutation circuit (switch 𝐾 turn on, Fig. 2.7,a), and current 𝑖𝐿(0) in 

inductance 𝐿 equals zero. This is an independent initial condition. 

 

 
a    b 

Fig. 2.6 
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According to the rules of operator image of elements obtaining, we 

compile EOS for the post-commutation circuit (switch K is locked). The 

scheme is shown in Fig. 2, 7, b. 

Let’s calculate the scheme in Fig. 2.7,b. 

It is obviously that  

𝐼(𝑝) =

𝐸
𝑝
−
𝑢𝑐(0)
𝑝

𝑟 + 𝑝𝐿 +
1
𝑝𝐶

=
𝐸 − 𝑢𝑐(0)

𝐿

1

𝑝2 +
𝑟
𝐿 𝑝 +

1
𝐿𝐶

 .          (2.34) 

Let’s denote that 𝛿 =
𝑟

2𝐿
 – attenuation coefficient, 𝜔0 =

1

√𝐿𝐶
 – 

resonance frequency. Then from the expression (2.34) we get 

𝐼(𝑝) =
𝐸 − 𝑢𝑐(0)

𝐿

1

𝑝2 + 2𝛿𝑝 + 𝜔0
2 =   

 (2.35) 

=
𝐸 − 𝑢𝑐(0)

𝐿

1

(𝑝 − 𝑝1)(𝑝 − 𝑝2)
, 

where 𝑝1,2 = −𝛿 ± √𝛿
2 − 𝜔0

2 are roots of equation  

𝑝2 + 2𝛿𝑝 + 𝜔0
2 = 0 .     (2.36) 

Depending on the values of the roots 𝑝1,2 for circuit in Fig. 2.7, b 

the modes are distinguish on: 

- aperiodic (at 𝛿 > 𝜔0); roots (2.36) – real and different, i.e. 

𝑟

2𝐿
>

1

√𝐿𝐶
 or 𝑟 > 2√

𝐿

𝐶
= 2𝜌 = 𝑟𝑐𝑟, where 𝑟𝑐𝑟 = 2𝜌 – critical 

resistance; 

- critical (at 𝛿 = 𝜔0); roots (2.36) – real and same, 𝑟 = 𝑟𝑐𝑟; 
- oscillatory (at 𝛿 < 𝜔0); roots (2.36) – complex and conjugated, 

𝑟 < 𝑟𝑐𝑟. 
Expressions for voltage in inductance and in capacitor have the 

form 

𝑈𝐿(𝑝) = 𝐼(𝑝)𝑝𝐿 =
𝐸 − 𝑢𝑐(0)

𝐿
𝑝𝐿

1

𝑝2 + 2𝛿𝑝 + 𝜔0
2 =

                            
 

(2.37) 

= [𝐸 − 𝑢𝑐(0)] 
𝑝

𝑝2 + 2𝛿𝑝 + 𝜔0
2 ; 
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𝑈𝐶(𝑝) =
𝑢𝑐(0)

𝑝
+ 𝐼(𝑝)

1

𝑝𝐶
=  
𝑢𝑐(0)

𝑝
+
𝐸 − 𝑢𝑐(0)

𝐿𝐶

1

𝑝(𝑝2 + 2𝛿𝑝 + 𝜔0
2)
= 

=
𝑢𝑐(0)

𝑝
+ 𝜔0

2[𝐸 − 𝑢𝑐(0)]
1

𝑝(𝑝2 + 2𝛿𝑝 + 𝜔0
2)
.         (2.38) 

Expressions for the originals of the current are found by using the 

expansion formulas for the current images (2.34), (2.35) and (2.36). 

Expression for curent 𝑖(𝑡) is defined according to the formula 

(2.17). According to the formula (2.34) we have: 𝐹1(𝑝) = 1; 𝐹2(𝑝) =
𝑝2 + 2δ𝑝 + +ω0

2 = (𝑝 − 𝑝1)(𝑝 − 𝑝2), where 𝑝1, 𝑝2 are defined 

according to the formula (2.36); 

𝑛 = 2; 

𝐹2
′(𝑝) = [(𝑝 − 𝑝1)(𝑝 − 𝑝2)]

′ = 𝑝 − 𝑝2 + 𝑝 − 𝑝1 = 2𝑝 − 𝑝1 − 𝑝2; 

𝐹2
′(𝑝1) = 2𝑝1 − 𝑝1 − 𝑝2 = 𝑝1 − 𝑝2;  

𝐹2
′(𝑝2) = 2𝑝2 − 𝑝1 − 𝑝2 = 𝑝2 − 𝑝1. 

So, 

𝑖(𝑡) =
𝐸 − 𝑢𝑐(0)

𝐿
(

1

𝑝1 − 𝑝2
𝑒𝑝1𝑡 +

1

𝑝2 − 𝑝1
𝑒𝑝2𝑡) = 

=
𝐸 − 𝑢𝑐(0)

(𝑝1 − 𝑝2)𝐿
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡).                            (2.39) 

Expression for the original of inductance voltage 𝑢𝐿(𝑡) is defind 

according to the formula (2.17) also. And according to formula 1 (2.37) 
we have 

F1(p) = p; F2(p) = p
2 + 2δp + ω0

2; F2
′ (p) = 2p − p1 − p2; 

F1(p1) = p1;  F1(p2) = p2;  F2
′ (p1) = p1 − p2;  F2

′ (p2) = p2 − p1. 
Then  

𝑢𝐿(𝑡) = [𝐸 − 𝑢𝑐(0)] (
𝑝1

𝑝1 − 𝑝2
𝑒𝑝1𝑡 +

𝑝2
𝑝2 − 𝑝1

𝑒𝑝2𝑡) = 

=
𝐸 − 𝑢𝑐(0)

𝑝1 − 𝑝2
(𝑝1𝑒

𝑝1𝑡 − 𝑝2𝑒
𝑝2𝑡). 

To determine the original of capacity voltage 𝑢𝐶(𝑡) with taking into 

account that the denominator of the second term in formula (2.38) has a 

root equals to zero and by using the decomposition formula (2.18), 

according to which for the second term we obtain the following 

expression: 

𝐹1(𝑝) = 1; 𝐹3(𝑝) = 𝑝
2 + 2δ𝑝 + ω0

2; 𝐹3
′(𝑝) = 2𝑝 − 𝑝1 − 𝑝2; 

𝐹1(0) = 1; 𝐹3(0) = 𝜔0
2; 𝐹3

′(𝑝1) = 𝑝1 − 𝑝2; 𝐹3
′(𝑝2) = 𝑝2 − 𝑝1. 
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Because 
𝑢𝑐(0)

𝑝
= 𝑢𝑐(0), then 

𝑢𝑐(𝑡) = 𝑢𝑐(0) + 𝜔0
2[𝐸 − 𝑢𝑐(0)] × 

× [
1

𝜔0
2 +

1

𝑝1(𝑝1 − 𝑝2)
𝑒𝑝1𝑡 +

1

𝑝2(𝑝2 − 𝑝1)
𝑒𝑝2𝑡] = 

= 𝑢𝑐(0) + 𝜔0
2[𝐸 − 𝑢𝑐(0)] [

1

𝜔0
2 +

1

𝑝1 − 𝑝2
(
1

𝑝1
𝑒𝑝1𝑡 −

1

𝑝2
𝑒𝑝2𝑡)] =   

= 𝑢𝑐(0) + 𝜔0
2[𝐸 − 𝑢𝑐(0)] [

1

𝜔0
2 +

1

𝜔0
2(𝑝1 − 𝑝2)

(𝑝2𝑒
𝑝1𝑡 − 𝑝1𝑒

𝑝2𝑡)] = 

= 𝑢𝑐(0) + 𝐸 − 𝑢𝑐(0) +
𝐸 − 𝑢𝑐(0)

𝑝1 − 𝑝2
(𝑝2𝑒

𝑝1𝑡 − 𝑝1𝑒
𝑝2𝑡) = 

𝐸 +
𝐸 − 𝑢𝑐(0)

𝑝1 − 𝑝2
(𝑝2𝑒

𝑝1𝑡 − 𝑝1𝑒
𝑝2𝑡) .                      (2.40) 

Here it is taken into account that 

𝑝1𝑝2 = (−𝛿 + √𝛿
2 − 𝜔0

2)(−𝛿 − √𝛿2 − 𝜔0
2) = 𝜔0

2 . 

 

 

2.7. Analysis of transient processes  by the second order circuit 

turn on with constant voltage 

 

For the electric scheme in Fig. 2.7, a the such processes are 

distinguished. 

1. At 𝐸 = 0 it is a free process in 𝑟𝐿𝐶 electric circuit, at which the 

capacitor charged to voltage 𝑢𝑐(0)  is completely discharged and then 

𝑖(𝑡) =
𝑢𝑐(0)

(𝑝2 − 𝑝1)𝐿
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡);                           (2.41) 

𝑢𝐿(𝑡) =
𝑢𝑐(0)

(𝑝2 − 𝑝1)
(𝑝1𝑒

𝑝1𝑡 − 𝑝2𝑒
𝑝2𝑡);                 (2.42) 

𝑢𝐶(𝑡) =
𝑢𝑐(0)

𝑝2 − 𝑝1
(𝑝2𝑒

𝑝1𝑡 − 𝑝1𝑒
𝑝2𝑡);                           (2.43) 

Let’s consider the possible modes. 

Aperiodic mode (𝛿 > 𝜔0). Graphics of functions 𝑖(𝑡), 𝑢𝐿(𝑡), 𝑢𝐶(𝑡) 
are presented in Fig. 2.8.а,b,c respectively, where |𝑝2| > |𝑝1|. And 

𝑝1 < 0,  𝑝2 < 0, that is the roots are valid, different and negative.  
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Fig.2.8 

 

In Fig. 2.8.c 𝑢𝐶(0) < 0. From Fig.2.8 it follows that the current 

𝑖(𝑡) increases from zero to the maximum value, and then falls to zero. 

The voltage 𝑢𝐿(𝑡) increases with jump at a switching moment 𝑡 = 0 

from zero value to 𝑢𝐶(0) and then it decreases, passes through zero 

(when the current 𝑖(𝑡) reaches the maximum value), and then it 

becomes negative, and then grows to the maximum value and falls to 

zero value. Voltage 𝑢𝐶(𝑡) gradually decreases from value 𝑢𝐶(0) to 

zerow value, the capacitor is discharged and the transient process is 

over.  

Oscillatory mode (δ < ω0). The roots 𝑝1, 𝑝2 are complex and 

conjugated:  
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𝑝1,2 = −𝛿 ± 𝑗√𝜔0
2 − 𝛿2 = −𝛿 ± 𝑗𝜔𝑓𝑟𝑒 = −𝜔0𝑒

+𝑗𝑎, (2.44) 

where 

𝜔𝑓𝑟𝑒 = √𝜔0
2 − 𝛿2;  𝛼 = arctg

𝜔𝑓𝑟𝑒

𝛿
 .                  (2.45) 

Then, according to the expression (2.41) and taking into account 

the relation (2.44) we have  

𝑖(𝑡) =
𝑢с(0)

(−𝛿 − 𝑗𝜔𝑓𝑟𝑒 + 𝛿 − 𝑗𝜔𝑓𝑟𝑒 )𝐿
∙ [𝑒(−𝛿+𝑗𝜔𝑓𝑟𝑒) − 𝑒(−𝛿−𝑗𝜔𝑓𝑟𝑒)] = 

                      (2.46) 

= −
𝑢с(0)

𝜔𝑓𝑟𝑒 𝐿
𝑒−𝛿𝑡

𝑒𝑗𝜔𝑓𝑟𝑒𝑡 − 𝑒−𝑗𝜔𝑓𝑟𝑒𝑡

2𝑗
=  −

𝑢с(0)

ω𝑓𝑟𝑒𝐿
𝑒−𝛿𝑡 sin𝜔𝑓𝑟𝑒𝑡.    

Similarly, according to the expressions (2.42) and (2.43) and taking 

into account the relations (2.44) and (2.45) we have 

𝑢𝐿(𝑡) =  
𝜔0
𝜔𝑓𝑟𝑒

 𝑢с (0)𝑒
−𝛿𝑡 sin(𝜔𝑓𝑟𝑒𝑡 − 𝛼);                (2.47) 

𝑢с(𝑡) =  
𝜔0
𝜔𝑓𝑟𝑒

 𝑢с (0)𝑒
−𝛿𝑡 sin(𝜔𝑓𝑟𝑒𝑡 + 𝛼);                (2.48) 

According to formula (2.46) the plot of current change was 

constructed 𝑖(𝑡) (Fig. 2.9). The curent 𝑖(𝑡) varies according to the 

sinusoidal law, and the amplitude of the current drops by exponential 

law. Exponent 
𝑢с(0)

𝜔𝑓𝑟𝑒𝐿
𝑒−𝛿𝑡 is the bypass amplitude of the sinusoidal 

curve. 

 
Fig. 2.9 

 

2. At 𝑢с(0) = 0 it is a turn on mode of rLC-curcuit with an 

uncharged capacitor on constant voltage. At the same time from the 

expressions (2.31) and (2.33) we have 
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𝑖(𝑡) =  
𝐸

(𝑝1 − 𝑝2)𝐿
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡);                              (2.49) 

𝑢𝐿(𝑡) =  
𝐸

𝑝1 − 𝑝2
(𝑝1𝑒

𝑝1𝑡 − 𝑝2𝑒
𝑝2𝑡);                        (2.50) 

𝑢𝐶(𝑡) = 𝐸 + 
𝐸

𝑝1 − 𝑝2
(𝑝2𝑒

𝑝1𝑡 − 𝑝1𝑒
𝑝2𝑡).               (2.51) 

Let’s consider the possible modes. 

Аперіодичний режим (δ > ω0). The plots of fuctions 𝑖(𝑡), 𝑢𝐿(𝑡) 
and 𝑢𝐶(𝑡) are depicted in Fig.2.10. The capacitor 𝐶 (Fig.2.7,а) 

aperiodically charged from zero voltage to voltage value 𝐸. Current 𝑖(𝑡) 
in circuit is growing from zerou value up to maximum value (at the 

maximum speed of voltage 𝑢𝐶(𝑡) change). Voltage 𝑢𝐿(𝑡) in inductance 

at switching moment 𝑡 = 0 grows with jump from zero value to 𝐸 

value, then begins to decrease and passes through the zero value (at 

maximum current value 𝑖(𝑡)); then becomes negative and increases to 

the maximum negative value (at the maximum speed of the current 𝑖(𝑡) 
change) and then goes down to zero. 

 
Fig.2.10 

 

Oscillatory mode (𝛿 < 𝜔0). At this mode similar to the formulas 

(2.46) - (2.48) from the equations (2.49) - (2.51) we obtain  

𝑖(𝑡) =
𝐸

𝜔𝑓𝑟𝑒𝐿
𝑒−δ𝑡 sin𝜔𝑓𝑟𝑒(𝑡);                          (2.52) 

𝑢𝐿(𝑡) = −
𝜔0
𝜔𝑓𝑟𝑒

𝐸𝑒−δ𝑡 sin(𝜔𝑓𝑟𝑒𝑡 − 𝛼);           (2.53) 

𝑢𝐶(𝑡) = 𝐸 −
𝜔0
𝜔𝑓𝑟𝑒

𝐸𝑒−δ𝑡 sin(𝜔𝑓𝑟𝑒𝑡 + 𝛼) .      (2.54) 

In the Fig. 2.11 the curves of current 𝑖(𝑡) and voltage 𝑢𝐶(𝑡) change 

according to formulas (2.52)-(2.54) are presented. Here current 𝑖(𝑡) 
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changes as shown in Fig. 2.9. Voltage 𝑢𝐶(𝑡) according to oscillatory 

law and tends to source voltage E. If 𝑡 =
𝑇𝑓𝑟𝑒

2
 and 𝜔0 ≈ ω𝑓𝑟𝑒, 𝛿 ≪

ω𝑓𝑟𝑒, namely 𝛼 ≈
π

2
, then expression becomes as  

𝑢𝐶 (
𝑇𝑓𝑟𝑒

2
) = 𝐸 + 𝐸𝑒−𝛿

𝑇𝑓𝑟𝑒
2 ≈ 2𝐸. 

So, voltage at capacitor can be reached almost in twice more than 

source voltage E. 

 
Fig. 2.11 

 

 

2.8. Parameters of free oscillations 

 

The oscillation process occurring in the rLC-circle is characterized 

by the following parameters: 

1) the time constant of oscillation process 

𝜏 =
1

𝛿
=
2𝐿

𝑟
 , 

this is the time at which the ordinate of the oscillatory amplitude of 

free oscillations decreases in e times (τ does not depend on capacity 𝐶); 

2) duration of the oscillation process, namely, the transition 

time 𝑡𝑡𝑟 for which amplitude of free oscillations 𝐼𝑚 decreases in 100 

times. It is determined from the ratio 

𝐼𝑚𝑒
−𝛿𝑡𝑡𝑟 = 0,01𝐼𝑚 , 

where 
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𝑡𝑡𝑟 =
ln 100

𝛿
=
4.6

𝛿
= 4.6𝜏 ; 

3) rate of the oscillatory process, namely, the rate of attenuation of 

free oscillations, which is determined by the ratio of amplitudes of 

oscillations at 𝑡1 and 𝑡1 + 𝑇в moments of time: 

𝑖(𝑡1)

𝑖(𝑡1 + 𝑇𝑓𝑟𝑒)
=

𝐼𝑚𝑒
−𝛿𝑡1

𝐼𝑚𝑒
−𝛿(𝑡1+𝑇𝑓𝑟𝑒)

= 𝑒𝛿𝑇в  . 

The quantity 𝜃 = 𝛿 ∙ 𝑇𝑓𝑟𝑒 =
2𝜋𝛿

𝜔𝑓𝑟𝑒
 is called as logarithmic 

attenuation decrement. For high-quality 𝑟𝐿𝐶-circuit (𝛿 ≪ 𝜔0) because 

𝜔𝑓𝑟𝑒 ≈ 𝜔0 we have 

𝜃 = 𝛿𝑇0 =
2𝜋𝛿

𝜔0
=
𝜋

𝑄
 , 

where 𝑄 is quality or 𝑄 -factor of rLC-circuit 

𝑄 =
𝜌

𝑟
= √

𝐿

𝐶
∙
1

𝑟
=

𝐿

𝑟√𝐿𝐶
=

2𝐿

2𝑟√𝐿𝐶
=
𝜔0
2𝛿
 . 

 

 

2.9. Particularity of transient processes calculation by 

harmonic influences  

 

Transient processes calculation by harmonic influences can be 

carry out by the straightly transfer from harmonic values to their 

Laplace images (table 2.1). But more expediency is preliminary 

transformation harmonic values into complex values and the next direct 

Laplace transforms. Both theirs modes are shown on structure diagram 

(fig. 2.12).  

Reverse transfer from images to originals also carry out in two 

stages:  

1) at first through known operational images the complex of 

instantaneous meaning value of originals, 

2) and afterwards transfer from complex values to harmonic 

functions. Correspond diagram is shown in fig, 2.13. 
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Fig. 2.12   Fig. 2.13 

 

Example 2.2 

Calculate current 𝑖(𝑡) and voltage across capacitance 𝑢𝐶(𝑡) by 

switching rC-circuit to harmonic voltage 𝑒(𝑡) = 𝐸𝑚cos(𝜔𝑡 + 𝜓) in 

circuit fig.2.14. 

 
Fig. 2.14 

 

Solution. 

1. Let’s considered solution by direct application Laplace 

transforms. 

Let’s find independent initial conditions in before commutation 

circuit. 

Let’s assume 𝑢𝐶(0) = 0 

Let’s compile equivalent operation circuit (EOC) for the after 

commutation regime, substituting EMF 𝑒(𝑡) for 

𝐿[𝑒(𝑡)] = 𝐸(𝑝) = 𝐸𝑚
𝑝cos𝜓 − 𝜔sin𝜓

𝑝2 +𝜔2
.               (2.55) 

We compile EOC in fig. 2.15. 
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Fig. 2.15 

 

Using voltage Kirchhoff’s low (VKL), we get 

𝐼(𝑝)(𝑟 +
1

𝑝𝐶
)–𝐸(𝑝) = 0.                            (2.56) 

Solution of equation (2.56) gives 

𝐼(𝑝) =
𝐸𝑚
𝑟

𝑝2

𝑝2 +𝜔2
𝑒𝑝

𝜓
𝜔

𝑝 +
1
𝑟𝐶

=
𝐸𝑚
𝑟
cos𝜓

𝑝(𝑝 − 𝜔𝑡𝑑𝜓)

( 𝑝2 +𝜔2)(𝑝 +
1
𝑟𝐶)

;    (2.57) 

𝑈𝐶(𝑝) = 𝐼(𝑝)
1

𝑝𝐶
=
𝐸𝑚
𝑟𝐶

𝑝

𝑝2 +𝜔2
𝑒𝑝

𝜓
𝜔

𝑝 +
1
𝑟𝐶

= 

=
 𝐸𝑚  
𝑟𝐶

cos𝜓
𝑝 − 𝜔𝑡𝑑𝜓

( 𝑝2 +𝜔2) (𝑝 +
1
𝑟𝐶
)
.                     (2.58) 

Let’s define originals of current and voltages, using expansion 

formula and property phase lag (2.7) 

𝑖(𝑡) =
𝐸𝑚
𝑟

1

√(𝜔𝑟𝐶)2 +  1
×                        (2.59) 

× [𝛚𝑟𝐶cos(𝜔𝑡 + 𝜓 + 𝛼) − 𝑒−
𝑡

𝑟𝐶 sin(𝜓 + 𝛼)]; 

𝑢𝐶(𝑡) =
𝐸𝑚

√(𝜔𝑟𝐶)2 +  1
×                        (2.60) 

× [sin (𝜔𝑡 + 𝜓 + 𝛼) − 𝑒−
𝑡

𝑟𝐶sin(𝜓 + 𝛼)], 

where  𝛼 = arctg
1

𝜔𝑟𝐶
. 

2. Let’s considered solution by double transformation into complex 

and operation forms. 

Let’s substitute in after commutation circuit all elements by 

complex values  
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𝑒(𝑡) = 𝐸𝑚𝑒
𝑗( 𝜔𝑡+𝜓 ) = 𝐸𝑚𝑒

𝑗𝜓 = �̇�𝑚𝑒
𝑗𝜔𝑡;𝑍𝑟 = 𝑟; 𝑍𝐶 =

1

𝑗𝜔𝐶
. (2.61) 

Expression (2.61) can be represented in operational form 

𝐸(𝑝) =
𝐸𝑚

𝑝 − 𝑗𝜔
; 𝑍𝑟(𝑝) = 𝑟; 𝑍𝐶(𝑝) =

1

𝑝𝐶
.             (2.62) 

Using (2.57), (2.58), we get operation current and voltage 

𝐼(𝑝) =
𝐸𝑚
𝑟

𝑝

(𝑝 − 𝑗𝜔)(𝑝 +
1
𝑟𝐶)

;                       (2.63) 

𝑈𝐶(𝑝) =
𝐸𝑚
𝑟𝐶

1

(𝑝 − 𝑗𝜔) (𝑝 +
1
𝑟𝐶
)

.                    (2.64) 

Expressions for operational images of current (2.63) and voltage 

(2.64) are considerable simplily, then (2.57), (2.58). Originals of 

expressions (2.67), (2.68) gives complex instantaneous meaning current 

and voltage 

𝐼𝑚(𝑡) =
𝐸𝑚
𝑟
(

𝑗𝜔

𝑗𝜔 +
1
𝑟𝐶

𝑒𝑗𝜔𝑡 +
−
1
𝑟𝐶

−
1
𝑟𝐶 − 𝑗𝜔

𝑒−
𝑡
𝑟𝐶) = 

=
𝑟𝐶𝐸𝑚

𝑟(𝑗𝜔𝑟𝐶 + 1)

𝑗𝜔𝑟𝐶𝑒𝑗𝜔𝑡 + 𝑒−
𝑡
𝑟𝐶

𝑟𝐶
=                    (2.65) 

=
𝐸𝑚
𝑟

1

√(𝜔𝑟𝐶)2 +  1 
[𝜔𝑟𝐶𝑒

𝑗(𝜔𝑡+𝜓+ 
𝜋
2
−𝑎1)) + 𝑒−

𝑡
𝑟𝐶  𝑒𝑗(𝜓−𝑎1)] ; 

𝑈𝑚(𝑡) =
𝐸𝑚
𝑟𝐶
 [

1

𝑗𝜔 +
1
𝑟𝐶

 𝑒𝑗𝜔𝑡 + 
1

−𝑗𝜔 −
1
𝑟𝐶

 𝑒−
𝑡
𝑟𝐶] =    (2.66) 

=
𝐸𝑚

√(𝜔𝑟𝐶)2 +  1 
[𝑒𝑗(𝜔𝑡+𝜓−𝑎1) − 𝑒−

𝑡
𝑟𝐶  𝑒𝑗(𝜓−𝑎1)], 

where 

𝑎1 = arctg 𝜔𝑟𝐶 =   
𝜋

2
− arctg

1

𝜔𝑟𝐶
=
𝜋

2
− 𝛼 . 

We pass from complex values to real form 

𝑖(𝑡) =
𝐸𝑚
𝑟

1

√(𝜔𝑟𝐶)2 +  1 
×                           (2.67) 

× [𝜔𝑟𝐶cos(𝜔𝑡 + 𝜓 + 𝛼) − 𝑒−
𝑡

𝑟𝐶 sin(ψ + 𝑎1)], 
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𝑢𝐶(𝑡) =
𝐸𝑚

√(𝜔𝑟𝐶)2 +  1 
×                               (2.68) 

× [sin(𝜔𝑡 + 𝜓 + 𝛼) − 𝑒−
𝑡

𝑟𝐶sin (ψ + 𝑎1)], 
what is coincided with expressions (2.59), (2.60). 

 

Problem 2.1.  

Calculate and analyze  transient processes in a given linear circuit 

of the second order which source of constant EMF (fig. P.1.10.by 

operational method.     

Solution. 

1. Let’s find independent initial conditions - induction current i2(0), 

voltage across  capacitance 𝑢𝐶(0) – for before commutation circuit in  

Fig. P.2.1 (see Fig. P.1.11).  

𝑖2(0) = 𝑖𝐿(0) =
𝐸

𝑟2
,   𝑢𝐶(0) = 0. 

2. Let’s compile equivalent operational circuit for after 

commutation network  (Fig. P.2.1).  

 

 
Fig. P.2.1 

 

3. Let’s calculate circuit in Fig. P.2.1, using node voltage method 

(NVM). 

For the node 1 we get. 

(
1

𝑟1 + 𝑟2
+
1

𝑟3
+
1

𝑝𝐿
+ 𝑝𝐶)𝑈𝐶(𝑝) =

𝐸
𝑝

𝑟1 + 𝑟2
−
𝐿𝑖2(0)

𝑝𝐿
+

𝑢𝐶(0)
𝑝
1
𝑝𝐶

; 

where from 
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𝐼1(𝑝) =
𝑈𝐶(𝑝)

𝑟3
=

𝐸
𝑝

𝑟1 + 𝑟2
−
𝐿𝑖2(0)
𝑝𝐿 +

𝑢𝐶(0)
𝑝
1
𝑝𝐶

(
1

𝑟1 + 𝑟2
+
1
𝑟3
+
1
𝑝𝐿
+ 𝑝𝐶) 𝑟3

. 

After manipulation we get, using earlier received designation 𝛿 and 

𝜔0  

𝐼1(𝑝) =
−𝐸𝑟1

𝑟2𝑟3𝐶(𝑟1 + 𝑟2)
∙

1

𝑝2 + 2𝛿𝑝 + 𝜔0
2 .                 (P.2.1) 

4. Let’s find original for (P.2.1), using expansion formula  

𝑓(𝑡) = ∑
𝐹1(𝑃𝑘)

𝐹2
′(𝑃𝑘)

𝑒𝑃𝑘𝑡.                                 (P.2.2) 

𝑛

𝑘=1

 

Let’s represent (P.2.1) in form 

𝐼1(𝑝) =
−𝐸𝑟1

𝑟2𝑟3𝐶(𝑟1 + 𝑟2)
∙

1

(𝑝 − 𝑝1)(𝑝 − 𝑝2)
. 

where 𝑝1, 𝑝2  are defined from (P.1.28) 

𝐹2(𝑝) = (𝑝– 𝑝1)(𝑝– 𝑝2);    𝐹2
’ (𝑝) = 2𝑝–𝑝1– 𝑝2. 

Then 

𝑖1(𝑡) =
−𝐸𝑟1

𝑟2𝑟3𝐶(𝑟1 + 𝑟2)
(

1

(𝑝1 − 𝑝2)
𝑒𝑃1𝑡 +

1

(𝑝2 − 𝑝1)
𝑒𝑃2𝑡) = 

(P.2.3) 

=
𝐸𝑟1

𝑟2𝑟3𝐶(𝑟1 + 𝑟2)(𝑝2 − 𝑝1)
(𝑒𝑃1𝑡 − 𝑒𝑃2𝑡). 

It’s shown current 𝑖1(𝑡) coincide with current (P.1.40). 

We calculate ruts 𝑝1, 𝑝2, use (P.1.28) 

𝜏 =
(𝑟1 + 𝑟2)𝑟3𝐶

𝑟1 + 𝑟2 + 𝑟3
=
(10 + 10)4 ∙ 10 ∙ 10−6

10 + 10 + 4
= 33,33 ∙ 10−5c; 

𝛿 =
1

2τ
=

1

2 ∙ 33,33 ∙ 10−5
= 15 ∙ 103; 

𝜔0
2 =

1

𝐿𝐶
=

1

1∙10−3∙10∙10−6
= 108c−2; 

𝑝1,2 = −δ ± √δ
2 −ω0

2 = −15 ∙ 103 ±√(15 ∙ 103)2 − 108 = 

= −15 ∙ 103 ± 11,18 ∙ 103; 

𝑝1 = −15 ∙ 10
3 + 11,18 ∙ 103 = −3,82 ∙ 103c−1; 
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𝑝2 = −15 ∙ 10
3 − 11,18 ∙ 103 = −26,18 ∙ 103c−1; 

Let’s substitute meaning of parameters into expression (P.1.28) for 

𝑖1(𝑡) 

𝑖1(𝑡) =
100 ∙ 10

10 ∙ 4(10 + 10) ∙ 10 ∙ 10−5(−26,18 ∙ 103 + 3,82 ∙ 103)
× 

(P.2.4) 

× (𝑒−3,82∙10
3𝑡 − 𝑒−26,18∙10

3𝑡) = −59(𝑒−3,82∙10
3𝑡 − 𝑒−26,18∙10

3𝑡)A. 

 

Let’s designate  

𝜏1 = |
1

𝑝1
| =

1

3,82 ∙ 103
= 0,262 ∙ 10−3c; 

𝜏2 = |
1

𝑝2
| =

1

26,18 ∙ 103
= 0,038 ∙ 10−3c; 

Rerate (P.2.4) in form 

𝑖1(𝑡) = −5,9 (𝑒
−

𝑡

0,262∙10−3 − 𝑒
−

𝑡

0,038∙10−3)   (P.2.5) 

Using (P.2.5), construct graphic of current i1 (t) (Fig. P.2.2)                              

 

 
Fig. P.2.2 
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Methodic instruction 

 

Beginnings study section “Operational method of  transient 

processes analyses”, necessary acquaintance from direct Laplace 

transform and its properties, give grant attention to expansion formula, 

as basic means of  finding original from operation image.   

After that to study methods of equivalent operation circuit 

construction, master the common order of operational method of 

transient processes calculation. For example it is expediency to 

considered transient processes in second order circuit. 

Literature: [1] – [5]; [9] – [11]. 

 

Questions for self checking 

 

1. What is essence of operational method of  transient  processes 

analyses? 

2. Written down expressions for direct and reverse Laplace 

transforms. 

3. Formulate properties direct Laplace transform. 

4. Explain expressions of expansions formula.    

5. Compile equivalent operational circuit for the network of first 

and second order. 

6. Give common order of transient processes with help equivalent 

operational circuit. 

7. What is peculiarity operational transient processes calculation 

by harmonic influences? 
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3. CIRCUIT OPERATIONAL FUNCTIONS 

 

3.1. Notion of circuit operational function 

 

In the electric circuit the relation of the output value 𝑥𝑜𝑢𝑡 
(reaction) with the input value 𝑥𝑖𝑛 (action) in the general case is 

presented as 

𝑎𝑚
𝑑𝑚𝑥𝑖𝑛
𝑑𝑡𝑚

+ 𝑎𝑚−1
𝑑𝑚−1𝑥𝑜𝑢𝑡
𝑑𝑡𝑚−1

+ …+ 𝑎1
𝑑𝑥𝑜𝑢𝑡
𝑑𝑡

+ 𝑎0𝑥𝑜𝑢𝑡 = 

   (3.1) 

= 𝑏𝑛
𝑑𝑛𝑥𝑖𝑛
𝑑𝑡𝑛

+ 𝑏𝑛−1
𝑑𝑛−1𝑥𝑖𝑛
𝑑𝑡𝑛−1

+ …+ 𝑏1
𝑑𝑥𝑖𝑛
𝑑𝑡

+ 𝑏0𝑥𝑖𝑛 , 

where 𝑎0, 𝑎1, …, 𝑎𝑚, 𝑏0, 𝑏1, …, 𝑏𝑛 are the real coefficients which 

are determined by the electric circuit scheme and  parameters of 

its elements. 

If 𝑥𝑖𝑛 = 𝑋𝑖𝑛(𝑝), 𝑥𝑜𝑢𝑡 = 𝑋𝑜𝑢𝑡(𝑝), then in the operat form 

from the relation (3.1) we can write: 

(𝑎𝑚𝑝
𝑚 + 𝑎𝑚−1𝑝

𝑚−1 + … + 𝑎1𝑝 + 𝑎0)𝑋𝑜𝑢𝑡(𝑝) = 

= (𝑏𝑛𝑝
𝑛 + 𝑏𝑛−1𝑝

𝑛−1 + … + 𝑏1𝑝 + 𝑏0)𝑋𝑖𝑛(𝑝). 
The operational function of electric circuit (OFC) 𝐾(𝑝) is the 

ratio of the image of the output value to the image of the input 

value at zero initial conditions: 

𝐾(𝑝) =
𝑋𝑜𝑢𝑡(𝑝)

𝑋𝑖𝑛(𝑝)
=                                  (3.2) 

=
𝑏𝑛𝑝

𝑛 + 𝑏𝑛−1𝑝
𝑛−1 + … + 𝑏1𝑝 + 𝑏0

𝑎𝑚𝑝𝑚 + 𝑎𝑚−1𝑝𝑚−1 + … + 𝑎1𝑝 + 𝑎0
=
𝑁(𝑝)

𝑀(𝑝)
. 

Here 𝑛 < 𝑚 and OFC is the rational fraction. The polynomial 

𝑁(𝑝) has roots 𝑝01, 𝑝02, …, 𝑝0𝑛  , which are the zeros of function 

OFC. The polinomial 𝑀(𝑝) has roots 𝑝𝑝1, 𝑝𝑝2, …, 𝑝𝑝𝑚 , which 

are the poles of function OFC. So, 

𝐾(𝑝) =
𝑁(𝑝)

𝑀(𝑝)
= 𝐾

(𝑝 − 𝑝01)(𝑝 − 𝑝02)… (𝑝 − 𝑝0𝑛)

(𝑝 − 𝑝𝑝1)(𝑝 − 𝑝𝑝2)… (𝑝 − 𝑝𝑝𝑚)
,     (3.3) 
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where 𝐾 =
𝑏𝑛

𝑎𝑚
. 

That is the function OFK and hence the circuit itself are 

completely determined by the values of their zeros and poles on 

the complex plane. 

The operational function of electric circuit OFC are used to 

describe the electric circuits without independent energy sources 

at zero initial conditions. 
 

 

3.2. Variety of circuit operational function (COF) 

 

Let’s describe the scheme is presented in the Figure 3.1. 

 

 
Fig. 3.1  

 

The operational function of electric circuit is the ratio of 

operational currents or voltages of some element of electric circuit to the 

operational current or voltage in the input of th electric circuit. 

There are input and transient OFK functions: 

1) the input OFK function is ratio of the operational current or 

voltage in the input clamps of the electric circle. That is the operational 

input resistance 𝑍11(𝑝) and its conductivity 𝑌11(𝑝): 

𝑍11(𝑝) =
𝑈1(𝑝)

𝐼1(𝑝)
;   𝑌11(𝑝) =

𝐼1(𝑝)

𝑈1(𝑝)
. 

So, 

𝑍11(𝑝) =
1

𝑌11(𝑝)
; 

2) the transient OFK function is the ratio of operational currents or 

voltages in different clampes of electric circuit. That is the transient 

operational resistance 𝑍21(𝑝) and conductivity 𝑌21(𝑝), and 
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operational transient coefficients over current 𝐾𝐼21(𝑝) and voltage 

𝐾𝑈21(𝑝): 

𝑍21(𝑝) =
𝑈2(𝑝)

𝐼1(𝑝)
;   𝑌21(𝑝) =

𝐼2(𝑝)

𝑈1(𝑝)
; 

𝐾𝐼21(𝑝) =
𝐼2(𝑝)

𝐼1(𝑝)
;   𝐾𝑈21(𝑝) =

𝑈2(𝑝)

𝑈1(𝑝)
, 

 
 .
1

21

21
pY

pZ   

 

Example 3. 1 

Define circuit operation function for the circuit (fig.E.3.2) 

 
Fig. E.3.2 

 

Solution. 

Let’s represent elements of the circuit in operation form   

𝑍11(𝑝) =
𝑈1(𝑝)

𝐼1 (𝑝)
= 𝑟 +

𝑟

𝑟𝑝𝐶 + 1
= 𝑟

𝑟𝑝𝑐 + 2

𝑟𝑝𝑐 + 1
; 

𝑌11(𝑝) =
𝐼1 (𝑝)

𝑈1(𝑝)
=

1

𝑍11(𝑝 )
=
1

𝑟
∙
1 + 𝑟𝑝𝐶

2 + 𝑟𝑝𝐶
; 

𝑍21(𝑝) =
𝑈2(𝑝)

𝐼1 (𝑝)
=

𝑟

1 + 𝑟𝑝𝐶
=
1

𝐶
∙

1

𝑝 +
1
𝑟𝐶

; 

𝑌21(𝑝) =
𝐼2(𝑝)

𝑈1(𝑝)
=  

𝑌11(𝑝)

1 + 𝑟𝑝𝐶
=
1

𝑟

𝑝

𝑝 +
2
𝑟𝐶

; 

𝐾𝐼21(𝑝) =
𝐼2(𝑝)

𝐼1(𝑝)
=

𝑝

𝑝 +
1
𝑟𝐶

; 

𝐾𝑈21(𝑝) =
𝑈2(𝑝)

𝑈1(𝑝)
=

𝑟

𝑟2𝑝𝐶 + 2𝑟
=
1

𝑟𝐶
∙

1

𝑝 +
2
𝑟𝐶

. 
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This example shows COF depends only on circuit structure and 

don’t depends on input action. 

 

Problem 3.1.  
Calculate circuit operation function (transference admittance) for 

the given linear circuit of the second order (fig. P.3.1). 

Solution.  

1.Let’s find circuit operation function (transference admittance). 

𝑌21(𝑝) =
𝐼2(𝑝)

𝑈1(𝑝)
=
∆12
∆11

= 𝑌3(𝑝)                       (P.3.1) 

that is operation transference admittance 

 
Fig. P.3.1 

 

Let’s compile equivalent operation circuit (fig.P.3.2).  

 
Fig. P.3.2 

 

Designating basis node, rout down matrix node conductance 

(MNC) for the nodes 1, 2 

∆=

[
 
 
 

1

𝑟1 + 𝑟2
−

1

𝑟1 + 𝑟2

−
1

𝑟1 + 𝑟2

1

𝑟1 + 𝑟2
+
1

𝑟3
+
1

𝑝𝐿
+ 𝑝𝐶

]
 
 
 

. 

Where from 

∆12=
1

𝑟1 + 𝑟2
; ∆11=

1

𝑟1 + 𝑟2
+
1

𝑟3
+
1

𝑝𝐿
+ 𝑝𝐶. 
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As 𝑌3(𝑝) =
1

𝑟3
, then 

𝑌21(𝑝) =
1

(𝑟1 + 𝑟2) (
1

𝑟1 + 𝑟2
+
1
𝑟3
+
1
𝑝𝐿 + 𝑝𝐶)

∙
1

𝑟3
= 

=
(𝑟1 + 𝑟2)𝑟3𝑝𝐿

(𝑟1 + 𝑟2)[𝑟3𝑝𝐿 + (𝑟1 + 𝑟2)𝑝𝐿 + (𝑟1 + 𝑟2)𝑟3 + (𝑟1 + 𝑟2)𝑟3𝑝
2𝐿𝐶]

∙
1

𝑟3
 

=
𝐿𝑝

(𝑟1 + 𝑟2)𝑟3𝐿𝐶𝑝
2 + (𝑟1 + 𝑟2 + 𝑟3)𝐿𝑝 + (𝑟1 + 𝑟2)𝑟3

= 

=
1

(𝑟1 + 𝑟2)𝑟3𝐶
∙

𝑝

𝑝2 +
𝑟1 + 𝑟2 + 𝑟3
(𝑟1 + 𝑟2)𝑟3𝐶

𝑝 +
1
𝐿𝐶

. 

Using received designation, we get 

𝑌21(𝑝) =
1

(𝑟1 + 𝑟2)𝑟3𝐶
∙

𝑝

𝑝2 + 2δ𝑝 + ω0
2. 

Circuit operation function can be transferred into circuit complex 

function (𝐾(𝑗ω)) by substitution operator 𝑝 on image frequency 𝑗ω 

𝐾(𝑗ω) = 𝐾(𝑝) 
For COF can be right 

 

𝐾(𝑝) = 𝐾(σ + 𝑗ω) = 𝑅(σ,ω) + 𝑗𝑋(σ,ω) = 𝐾(σ,ω)𝑒𝑗φ(σ,ω), σ = 0, 
 

where 𝑅(σ,ω), 𝑋(σ,ω) – real and image part of 𝐾(σ + 𝑗ω); 𝐾(σ,ω), 
φ(σ,ω) – module and argument of COF. We remind of 𝑝 = σ + 𝑗ω. 

Components 𝑅(σ,ω), 𝑋(σ,ω), 𝐾(σ,ω), φ(σ,ω) of COF 𝐾(𝑝) are 

functions of two variables σ and ω. That is way their can by given 

surfaces. At 𝜎 = 0 components COF become components of circuit 

complex functions (CKF), that is way frequency characteristics. 

Circuit operation functions of linear circuit with finite number 

elements can by always represent fractional – rational functions in form 

relations determinants 𝑁(𝑝) and 𝑀(𝑝) (see 3.3). Zeros and poles of 

COF can be real or in pairs conjugate complex numbers. If they are real 

numbers processes in the circuit are periodic, if they are complex 

numbers – oscillator characters. In ideal passive circuit with only L-,C- 

elements free oscillators their amplitudes aren’t decries, in real circuits 

amplitudes decries in time 
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3.3. Transient processes analyze by of circuit operational 

functions 

 

Circuit operational functions are widely used for analyze processes 

in electrical circuits.  

It is shown from (3.2) 

𝑋𝑜𝑢𝑡(𝑝) = 𝐾(𝑝)𝑋𝑖𝑛(𝑝).   (3.4) 

 

So, the reaction of electric circuit 𝑋𝑜𝑢𝑡(𝑝) on the arbitrary input 

action 𝑋𝑖𝑛(𝑝) can be determined, if we know corresponding OFK 

function.  

From expression (3.4) follows the following order of analysis: 

1) make an equivalent circuit scheme of electric circuit; 

2) to calculate the corresponding OFK function; 

3) to find the operational image of input action 𝑋𝑖𝑛(𝑝); 
4) to calculate the operational image of electric circuit action 𝑋𝑜𝑢𝑡(𝑝); 
5) to determine the original of the found value 𝑋𝑜𝑢𝑡(𝑝) according to the 

tables or expansion formulas. 

As an example, let's consider the passage of signals through an 

electric circuit with OFK function.  

 

Example 3.2.  
The impulse of exponential form is applied to the input of electrical 

circuit (fig. E.3.2) 

𝑈𝑖𝑛(𝑡) = 𝑈𝑚𝑒
–α𝑡.     (3.5) 

Find current of capacitance 𝑖𝐶(𝑡).  
Solution. 

1. Image of the input action 𝑈𝑖𝑛(𝑡) =
𝑈𝑚

𝑝+α
. 

 
Fig. E.3.2 

 

 2.Image of the capacitance voltage 
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𝑈𝐶(𝑝) =
𝑈𝑚

(𝑝 + α)(2 + 𝑝𝑟𝐶)
. 

3. Image of the capacitance current  

𝐼𝐶(𝑝) =
𝑈𝑚𝑟𝑝𝐶

(𝑝 + 𝛼)(𝑟𝑝𝐶 + 2)
. (3.6) 

4. Characteristscal equations and its ruts 

(𝑝 + 𝛼)(𝑟𝑝𝐶 + 2) = 0,  𝑝1 = −𝛼,  𝑝2 = −
2

𝑟𝐶
. 

5. Original of capacitance current 

𝑖𝐶(𝑡) = 𝑈𝑚
α𝑒−α𝑡–

2𝑒–
2𝑡
𝑟𝐶

𝑟𝐶

𝑟 (α–
2
𝑟𝐶)

).                                      (3.7) 

Example 3.3. 

Switch 𝐾 is closed and apply the constant voltage 𝑢𝑖𝑛(𝑡) = 𝐸 to 

the input of the circuit (fig. 3.4). Define current 𝑖𝐿(𝑡) using circuit 

operational functions.  

 
Fig. 3.4 

 

Solution. 

1. Image of input influence (table 2.1) 

𝐿[𝑢𝑖𝑛(𝑡)] = 𝐿(𝐸) = 𝑈𝑖𝑛(𝑝) =
𝐸

𝑝 
.                      (3.5) 

2. Image of inductance current (table 2.1) 

𝐼𝐿(𝑝) =
𝐸𝑟2

(𝑟1 + 𝑟2 )𝐿
∙

1

 𝑝 [𝑝 +
𝑟1𝑟2

(𝑟1 + 𝑟2 )𝐿
]
.            (3.6.) 

Or 

𝐼𝐿(𝑝) = 𝐾
1

𝑝(𝑝 − 𝑝1)
,  

where 
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𝐾 =
𝐸𝑟2

(𝑟1 + 𝑟2)𝐿
,      𝑝1 = −

𝑟1𝑟2
(𝑟1 + 𝑟2)𝐿

.                   (3.7) 

That is way original 

𝑖𝐿(𝑡) =
𝐸

𝑟1
 [1 − 𝑒

 − 
𝑟1𝑟2

(𝑟1+𝑟2)𝐿
𝑡
] .                           (3.8) 

Input action is shown in fig. 3.5, graphic 𝑖𝐿(𝑡) – in fig.3.6 

 
Fig. 3.5    Fig. 3.6 

 

Example 3.4 

Calculate current 𝑖(𝑡) in the circuit (fig. 3.7) which is connected to 

voltage (fig. 3,8), using circuit operational function. 

  
Fig.3.7   Fig.3.8  

 

At interval 0-𝑡1 input voltage is changed exponentially  

𝑢(𝑡) = 𝑈0𝑒
−𝛼𝑡.    (3.9) 

If reaction is current 𝑖(𝑡) and influence – voltage 𝑢(𝑡) then 

operation transfer admittance  

𝑌(𝑝) =
𝐼(𝑝)

𝑈(𝑝)
=

𝑈(𝑝)

𝑟 +
1
𝑝𝐶

∙
1

𝑈(𝑝)
=

𝑝𝐶

𝑟𝑝𝐶 + 1
=
1

𝑟
∙

𝑝

𝑝 +
1
𝑟𝐶

.        (3.10) 

Operation image of input influence can be founded through direct 

Laplace transform (2.1), changed upper bound of integration    

𝑈(𝑝) = ∫ 𝑢(𝑡)

𝑡1

0

𝑒−𝑝𝑡𝑑𝑡 = ∫ 𝑈0𝑒
−𝛼𝑡

𝑡1

0

𝑒−𝑝𝑡𝑑𝑡 = 
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= 𝑈0∫ 𝑒−(𝑝+𝛼)𝑡𝑑𝑡

𝑡1

0

=
𝑈0
𝑝 + 𝛼

[1 − 𝑒−(𝑝+𝛼)𝑡1].        (3.11) 

Now in accordance (3.10), (3.11) we get 

𝐼(𝑝) = 𝑌(𝑝)𝑈(𝑝) =
1

𝑟
∙

𝑝

𝑝 + 
1
𝑟𝐶

∙
𝑈0

𝑝 + 𝛼 
 [𝑒−(𝑝+𝛼)𝑡1] = 

=
𝑈0
𝑟
[

𝑝

(𝑝 +
1
𝑟𝐶
) (𝑝 + 𝛼)

−
𝑝

(𝑝 +
1
𝑟𝐶
) (𝑝 + 𝛼)

𝑒−(𝑝+𝛼)𝑡1].  (3.12) 

Original of image (3.12) is designation for every item separately.   

For the first item in square brackets we get Ф1(𝑝) =
𝑝

(𝑝+
1

𝑟𝐶
)(𝑝+𝛼)

 in 

according expansion formula (2.17) we get  

𝐹1(𝑝) = 𝑝; 𝐹2(𝑝) = (𝑝 +
1

𝑟𝐶
)(𝑝 + α); 𝑛 = 2; 𝑝1 = −

1

𝑟𝐶
; 𝑝2 = −𝛼;  

𝐹2
′(𝑝) = 2𝑝 +

1

𝑟𝐶
+ 𝛼.  

Then original 

𝐿−1[Ф1(𝑝)] =
1

α −
1
𝑟𝐶

(𝛼𝑒−𝛼𝑡 −
1

𝑟𝐶
𝑒−

𝑡
𝑟𝐶) = Ф1(𝑡).         (3.13) 

For the second item in square brackets we get 

Ф2(𝑝) =
𝑝

(𝑝 +
1
𝑟𝐶)

(𝑝 + 𝛼)
𝑒−(𝑝+𝛼)𝑡1 = 𝑒−𝛼𝑡1Ф1(𝑝)𝑒

−𝑝𝑡1 . 

Were from in according phase lag (2.7) we get 

Ф2(𝑡) = 𝑒
−𝛼𝑡1Ф1(𝑡– 𝑡1) ∙ 1(𝑡– 𝑡1) = 

=
𝑒−𝛼𝑡1

𝛼 −
1
𝑟𝐶

[𝛼𝑒−𝛼(𝑡 – 𝑡1) −
1

𝑟𝐶
𝑒−

𝑡 – 𝑡1
𝑟𝐶 ] ∙ 1(𝑡– 𝑡1).           (3.14) 

Now, regarding (3.12) – (3.14), we get original current 𝑖(𝑡) 

𝑖(𝑡) =
𝑈0
𝑟
[Ф1(𝑡) − Ф2(𝑡)] =

𝑈0
𝑟
{

1

α −
1
𝑟𝐶

[𝛼𝑒−𝛼𝑡1 −
1

𝑟𝐶
𝑒−

𝑡
𝑟𝐶] – 

−
𝑒−α𝑡1

α −
1
𝑟𝐶

[α𝑒−α(𝑡 – 𝑡1) −
1

𝑟𝐶
𝑒−

𝑡 –𝑡1  
𝑟𝐶 ] ∙ 1(𝑡– 𝑡1)}. 
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If 𝑡 < 𝑡1, by 1(𝑡– 𝑡1) = 0 we get 

𝑖(𝑡) =
𝑈0

𝑟

1

𝛼−
1

𝑟𝐶

(𝑒−𝛼𝑡1 −
1

𝑟𝐶
𝑒−

𝑡

𝑟𝐶) −
𝑈0

  𝑟(1−𝛼𝑟𝐶)
(𝑒−

𝑡

𝑟𝐶 − 𝛼𝑟𝐶𝑒−𝛼𝑡 ). (3.15) 

If 𝑡 ≥ 𝑡1, by 1(𝑡– 𝑡1) = 1 we get 

𝑖(𝑡) =
𝑈0
𝑟
{

1

𝛼 −
1
𝑟𝐶

(𝑒−𝛼𝑡1 −
1

𝑟𝐶
𝑒−

𝑡
𝑟𝐶) −  

𝑒−𝛼𝑡1

𝛼 −
1
𝑟𝐶

[𝛼𝑒−𝛼(𝑡 – 𝑡1) −    

−
1

𝑟𝐶
𝑒−

𝑡 –𝑡1  
𝑟𝐶 ]} =

𝑈0
  𝑟(1 − 𝛼𝑟𝐶)

(𝑒−
𝑡
𝑟𝐶 − α𝑟𝐶𝑒−𝛼𝑡 ) .    (3.16) 

Where from, if 𝑡 = 𝑡1 

𝑖(𝑡) =
𝑈0

  𝑟(1 − α𝑟𝐶)
[1– 𝑒

(
𝑡
𝑟𝐶
−𝛼)𝑡1] 𝑒−

𝑡1
𝑟𝐶 = 

=
𝑈0

  𝑟(1 − 𝛼𝑟𝐶)
(𝑒−

𝑡1
𝑟𝐶 − 𝑒−𝛼𝑡1  ). 

From (3.15) if 𝑡 → 0 we get 𝑖(𝑡)  → 0. 

Operate image of input action can be receive represented input 

voltage as difference of simplest actions 

𝑢(𝑡) = 𝑢1(𝑡)– 𝑢2(𝑡), 
where 𝑢1(𝑡) can be expressed in according (3.9) 

𝑢1(𝑡) = 𝑈0𝑒
−𝛼𝑡 ∙ 1(𝑡),    (3.17) 

and 𝑢2(𝑡) is shifted at 𝑡1 exponent
 
 

𝑢2(𝑡) = 𝑈0𝑒
−𝛼𝑡𝑒−α(𝑡 – 𝑡1) ∙ 1(𝑡– 𝑡1).   (3.18) 

From (3.17) and table 2.1 we get  

𝑈1(𝑝) =  
𝑈0
𝑝 + 𝛼

, 

then from (3.18) in accordance (2.7) we get 

𝑈2(𝑝) =
𝑈0
𝑝 + 𝛼

 𝑒−𝛼𝑡1𝑒−𝑝𝑡1 . 

and as result 

𝑈(𝑝) = 𝑈1(𝑝) − 𝑈2(𝑝) =
𝑈0
𝑝 + α

[1 − 𝑒−(𝑝+𝛼)𝑡1], 

what is coincide with (3.11). 

 

Problem 3.2 

Calculate and analyze of exponential video impulse passing in a 

given linear passive circuit of the second order (fig. P.3.1) with help 
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circuit operational function: 𝑢(𝑡) = 𝐸𝑒−𝛼𝑡, where α = 0.3|𝑝𝑚𝑖𝑛|, 𝑝𝑚𝑖𝑛 

– lesser module root of characteristically equation. Find current 𝑖1(𝑡). 
Solution. 

Operational image of input signal 

𝑈(𝑝) =
𝐸

𝑝 + 𝛼 
.                                               (P.3.2) 

Then image of output current I1(p), using (P.3.2) and (P.3.1)  

𝐼1(𝑝) = 𝑈(𝑝)𝑌21(𝑝) = 𝐸
1

𝑝 + 𝛼
∙

𝑝

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝
2 + 2𝛿𝑝 + 𝜔0

2)
= 

=
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶
∙

𝑝

(𝑝 − 0.3𝑝1)(𝑝 − 𝑝1)(𝑝 − 𝑝2)
.    (P. 3.3) 

Here α = 0,3|𝑝𝑚𝑖𝑛| = − 0,3 𝑝1 

Let’s find original of (P.3.3) by expansion theorem, using formula 

(P.2.2). Here 

𝐹2(𝑝) = (𝑝 − 0,3𝑝1)(𝑝 − 𝑝1)(𝑝 − 𝑝2).  (P.3.4) 

Then derivative of (P.3.4) will be rout down as  

𝐹2
′(𝑝) = (𝑝 − 𝑝1)(𝑝 − 𝑝2) + (𝑝 − 0,3𝑝1)(2𝑝 − 𝑝1−𝑝2). 

Original from (P.3.4) is equal to           

𝑖1(𝑡) =
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶
[

0,3𝑝1
−0,7𝑝1(0,3𝑝1−𝑝2)

𝑒0,3𝑝1𝑡 + 

+
𝑝1

0,7𝑝1(𝑝1−𝑝2)
𝑒𝑝1𝑡 +

𝑝2
(𝑝2 − 0,3𝑝1)(𝑝1−𝑝2)

𝑒𝑝2𝑡] = 

=
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
(0,429

𝑝1−𝑝2
𝑝2 − 0,3𝑝1

𝑒0,3𝑝1𝑡 + 1,429𝑒𝑝1𝑡 − 

−
𝑝2

𝑝2 − 0,3𝑝1
𝑒𝑝2𝑡) .                                (P.3.5) 

Let’s substitute into (P.3.5) numerate values. We get  

𝑖1(𝑡) =
1

(10 + 10) ∙ 4 ∙ 10 ∙ 10−6(−3,82 ∙ 103 + 26,18 ∙ 103)
× 

× [0,429
(−3,82 ∙ 103 + 26,18 ∙ 103) ∙ 𝑒−0,3∙3,82∙10

3𝑡

−26,18 ∙ 103 + 0,3 ∙ 3,82 ∙ 103
+ 

+1,429 ∙ 𝑒−3,82∙10
−3𝑡 −

−26,18 ∙ 103 ∙ 𝑒−26,18∙10
3𝑡

−26,18 ∙ 103 + 0,3 ∙ 3,82 ∙ 103
] =     (P.3.6) 

= −2,14 ∙ 𝑒
−

𝑡
0,873∙10−3 + 7,99 ∙ 𝑒

−
𝑡

0,262∙10−3 − 5,85 ∙ 𝑒
−

𝑡
0,038∙10−3A. 

Graphic 𝑖(𝑡) is shown in fig. P.3.3  
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Fig. P.3.3 

 

Problem 3.3. 

Calculate and analyze of exponential video impulse passing in a 

given linear passive circuit of the second order (fig. P.3.1) with help 

Duhamel integral (time method) by input action 𝑢(𝑡) = 𝐸𝑒−α𝑡, where 

α = 0.3|𝑝𝑚𝑖𝑛|, 𝑝𝑚𝑖𝑛 – lesser module root of characteristically equation. 

Find current 𝑖1(𝑡). 
Solution. 

Lets used the following form of convolution integral (Duhamel) 

𝑓𝑜𝑢𝑡(𝑡) = ∫𝑓𝑖𝑛(𝑡 − τ)

𝑡

0

𝑎(τ)𝑑τ.                      (P.3.7) 

Here: 

{
 
 

 
 

𝑓𝑜𝑢𝑡(𝑡) = 𝑖1(𝑡);                                                                                          

ℎ(𝑡) = ℎ𝑌1(𝑡); if 𝑡 = 0  ℎ𝑌1(𝑡) = 0, according to (3.33);                  

𝑓𝑖𝑛(𝑡) = 𝑢1(𝑡) = 𝐸𝑒
−α𝑡,  𝑓𝑖𝑛(𝑡 − τ) = 𝑢1(𝑡 − τ) = 𝐸𝑒

−α(𝑡−τ); (P.3.8) 

𝑎(𝑡) = 𝑎𝑌21(𝑡); 𝑎𝑌21(τ) =
1

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
(𝑝1𝑒

𝑝1τ−𝑝2𝑒
𝑝2τ).

 

 

After substitution (P.3.8) into (P.3.7) we get                              
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𝑖1(𝑡) = ∫𝐸𝑒
−α(𝑡−τ)

1

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
(𝑝1𝑒

𝑝1τ−𝑝2𝑒
𝑝2τ)𝑑τ =

𝑡

0

 

=
𝐸𝑒−α𝑡

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
∫𝑒ατ
𝑡

0

(𝑝1𝑒
𝑝1τ−𝑝2𝑒

𝑝2τ)𝑑τ = 

=
𝐸𝑒−α𝑡

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
[𝑝1∫𝑒

(α+𝑝1)τ𝑑τ − 𝑝2∫𝑒
(α+𝑝2)τ𝑑τ

𝑡

0

𝑡

0

] = 

=
𝐸𝑒−α𝑡

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
[
𝑝1

α + 𝑝1
𝑒(α+𝑝1)τ|

0

𝑡

−
𝑝2

α + 𝑝2
𝑒(α+𝑝2)τ|

0

𝑡

] = 

=
𝐸𝑒−α𝑡

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
{
𝑝1

α + 𝑝1
[𝑒(α+𝑝1)t − 1] − 

−
𝑝2

α + 𝑝2
[𝑒(α+𝑝2)t − 1]} = 

=
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
[
𝑝1

α + 𝑝1
(𝑒𝑝1t − 𝑒−α𝑡) − 

−
𝑝2

α + 𝑝2
(𝑒𝑝2t − 𝑒−α𝑡)] =                    (P.3.9) 

=
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
[
𝑝1

α + 𝑝1
𝑒𝑝1t −

𝑝2
α + 𝑝2

𝑒𝑝2t − 

−(
𝑝1

α + 𝑝1
−

𝑝2
α + 𝑝2

) 𝑒−α𝑡] = 

=
𝐸

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
[

𝑝1
𝑝1 − 0,3𝑝1

𝑒𝑝1t −
𝑝2

𝑝2 − 0,3𝑝1
𝑒𝑝2t + 

+
(𝑝1 − 𝑝2)0,3𝑝1

(𝑝1 − 0,3𝑝1)(𝑝2 − 0,3𝑝1)
𝑒0,3𝑝1t] =

𝐸

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
× 

× (1,429𝑒𝑝1t −
𝑝2

𝑝2 − 0,3𝑝1
𝑒𝑝2t + 0,429

𝑝1−𝑝2
𝑝2 − 0,3𝑝1

𝑒0,3𝑝1t). 

 

It is shown, (P.3.9) coincide with result by operation method. There 

for we get identical graphic (fig. 3.9). 
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Fig. P.3.9 

                                                         

 

Methodic instruction 

 

Its necessary realize essence circuit operational function and there 

variety, master order of calculate and analyze transient processes with 

help circuit operational functions. Theoretical material is fixed by 

examples of calculations for pass signals of composite form through 

electrical circuits.  

 

Literature: [1] - [4]; [9]; [14] - [16] 

 

Questions for self checking 

 

1. What are circuit operational functions? What are varieties of 

them? 

2. What is connected circuit operational function with circuit 

complex function? 

3. Give an example of transient processes calculation with help 

circuit operational function. 
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4. METHOD OF CONVOLUTION INTEGRAL 

 

4.1. Superposition method in transient processes theory 

 

If to a linear electric circuit the complex action 𝑥𝑖𝑛(𝑡), which 

equals to the sum of simple input actions 𝑥𝑖𝑛,𝑘(𝑡) is applied 

𝑥𝑖𝑛,𝑘(𝑡) = ∑ 𝑥𝑖𝑛,𝑘(𝑡)𝑘 , 

then the reaction of the output electric circuit 𝑥𝑜𝑢𝑡(𝑡) equals to the 

sum of reactions on each  of the simple actions𝑥𝑜𝑢𝑡,𝑘(𝑡)  separately 

𝑥𝑖𝑛,𝑘(𝑡) = ∑ 𝑥𝑖𝑛,𝑘(𝑡)𝑘    (4.1) 

where 𝑥𝑜𝑢𝑡(𝑡) is electric circuit reaction on the simple action 𝑥𝑜𝑢𝑡,𝑘(𝑡) . 
It is convenient to present the complex action as the sum of such 

simple actions, which reactions definition does not require much effort. 

Such actions are called typical. 

 

 

4.2. Typical impulse actions 

 

In practice, for the analysis of electric circuits the two types of 

typical actions are used widely: single step function and delta function. 

The single step function (switching function, Heaviside function) 

1(t) is determined by the such relation (Fig. 4.1,а): 

1(𝑡) = {
0 at 𝑡 < 0;
1 at 𝑡 > 0.

 

 
a      b 

Fig. 4.1 

 

For the time value 𝑡 = 0 function is not defined. 

At the functions is shifted to the right along the time axis on the 

distance τ function is determined by the following relation (Fig. 4.1.b): 
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1(𝑡 − 𝜏) = {
0 at 𝑡 < 𝜏;
1 at 𝑡 > 𝜏.

 

By the function 1(𝑡) using it is possible to present the different 

signals. For example, switching the voltage 𝑢(𝑡) (Fig. 4.2.а) at the time 

moment τ is expressed by expression 𝑓(𝑡) = 𝑢(𝑡)1(𝑡 − τ). 
This process is shown in Fig.4.2.b. 

 

 
a      b 

Fig.4.2 

 

The rectangular impulse (Fig. 4.3, c) can be written as: 

𝑓(𝑡) = 1(𝑡 − 𝑡1) − 1(𝑡 − 𝑡2).   (4.2) 

Functions 1(𝑡 − 𝑡1) and 1(𝑡 − 𝑡2) in 

expression (4.2) are shown in Fig. 4.3, a 

and Fig. 4.3, b respectively. 

The complex function of an arbitrary 

form can be represented approximately 

through the single step functions. 

Graphics of function f(t) is shown in the 

Fig. 4.4. Let’s break the axis of time on 

small areas Δt. Then the growth of the 

function is  

∆𝑓𝑘 = 𝑓(𝑘∆𝑡) − 𝑓[(𝑘 − 1)∆𝑡] =  (4.3) 

= 𝑓(𝜏) − 𝑓(𝜏 − ∆t), 
where 𝜏 = 𝑘∆𝑡.  

 

 

 

 

 

 

Fig. 4.3 
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So, expression for this function is  

𝑓(𝑡) ≈ 𝑓(0)1(𝑡) + ∑ ∆𝑓𝑘
𝑛
𝑘=1 1(𝑡 − 𝑘∆𝑡).  (4.4) 

 
Fig. 4.4 

 

Delta function (Dirac function) 𝛿(𝑡) is determined by the relations 

𝛿(𝑡) = {
0  𝑎𝑡 𝑡 ≠ 0,

∞  𝑎𝑡 𝑡 = 0,
           ∫ 𝛿(𝑡)

∞

−∞

𝑑𝑡 = 1. 

Delta function can be represented as an impulse with the time 

duration t and amplitude 𝑈𝑚 =
1

∆𝑡
 at 0t (Fig. 4.5), that is 

𝑈𝑚 = lim∆𝑡→0
1

∆𝑡
→ ∞ . 

Then the area S of the impulse time duration  

𝑆 = 𝑈𝑚∆𝑡 =
1

∆𝑡
∆𝑡 = 1 

equals to unit. 

At the delta function shifting on the time τ we obtain the delta 

function δ(𝑡 − τ) also (Fig. 4.6).  

 
Fig. 4.5     Fig. 4.6 

 

Delta function has such properties: 

𝛿(𝑡 − 𝜏) = {
0  𝑎𝑡 𝑡 ≠ 𝜏,
∞  𝑎𝑡 𝑡 = 𝜏,

               ∫ 𝛿(𝑡 − 𝜏)

∞

−∞

𝑑𝑡 = 1. 
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Delta function has a valuable filtering property: 

∫ 𝑓(𝑡)δ(𝑡)

∞

−∞

𝑑𝑡 = ∫ 𝑓(𝑡)δ(𝑡)

∆𝑡

−∆𝑡

𝑑𝑡 = ∫ 𝑓(0)δ(𝑡)

∆𝑡

−∆𝑡

𝑑𝑡 = 

(4.5) 

= 𝑓(0) ∫ δ(𝑡)

∆𝑡

−∆𝑡

𝑑𝑡 = 𝑓(0) ∫ δ(𝑡)

∞

−∞

𝑑𝑡 = 𝑓(0), 

as far as lim∆𝑡→0 𝑓(𝑡) = 𝑓(0). 
Analogically for delta-function δ(𝑡 − τ) property we have  

∫ 𝑓(𝑡)δ(𝑡 − τ)
∞

−∞
𝑑𝑡 = 𝑓(τ). (4.6) 

The filtering property of the delta-function is shown graphically in 

Fig.4.7. 

 

 
Fig.4.7 

 

From the comparison of the single step function (see. Fig. 4.1) and 

delta-function (see. Fig. 4.6) it is clear that 

∫δ(𝑡)

𝑡

−∞

𝑑𝑡 = 1(𝑡), 

δ(𝑡) =
𝑑

𝑑𝑡
[1(𝑡)] = 1′(𝑡). 

 

 

4.3 Circuit time characteristic  

 

The time characteristic of a circuit is called a function of time, 

which value is determined by the reaction of the circuit on the given 
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typical action. Such reaction depends only on the circuit’s scheme, that 

is, it can serve as a characteristic of circuit. 

The time characteristics are defined for linear circuits, which are 

don’t have independent sources of energy at the zero initial conditions. 

The time characteristics are devided into two groups: transient and 

impulsed. 

The transient characteristic or the transient function is determined 

by the reaction of the circuit on the action of the unit step function. It 

has the following varieties: 

a) at the action of a single jump of voltage: 

 if the reaction is voltage, then the characteristic is called as 

transient coefficient under the voltage 𝐾𝑢(𝑡) (dimensionless value); 

 if the reaction is electric current, then the characteristic is called 

as transient conductivity 𝑌(𝑡) (the unit of conductivity measurement is 

Siemens (Sm)); 

b) at the single jump of electric current: 

 if the reaction is voltage, then the characteristic is called as 

transient resistance 𝑍(𝑡) (the unit of the resistance measurement is 

Ohm); 

 if the reaction is electric current, then the characteristic is called 

the transient transmission coefficient under electric current 𝐾𝑖(𝑡) 
(dimensionless value). 

In general, the transient characteristic is denoted by ℎ(𝑡). For 

individual jumps of electric parameters a jump of constant voltage from 

zero to 1V or jump of a direct current from zero to 1A is used. 

Impulse characteristic or impulsed transient function is determined 

by the circuit reaction on the action of the delta-function form. 

At the impulse characteristics calculation at the input of a electric 

circuit the impulses of infinite amplitude value, zero time duration and 

unit area is applied. So, we have the following types of impulse 

characteristics:  

a) at the action of impulse with area in 1Vs: 

 if the reaction is voltage, then the characteristic is called as 

impulse transient coefficient of voltage. (The unit of measurement of the 

impulse voltage coefficient is the unit per second (1/s)); 

 if the reaction is an electric current, then the characteristic is  
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 called as impulse conductivity. (The unit of measurement for 

impulse conductivity is Sm per second (Sm/s)); 

b) at the electric current impulse action with an area of 1As: 

 if the reaction is voltage, then its characteristic is called as 

impulse resistance. (The unit of impulse resistance is Ohm per second 

(Ohm/s); 

 if the reaction is a electric current, its characteristic is called as 

impulse transient current coefficient. (The unit of the impulse current 

transient coefficient is the unit per second (1/s)).  

In the general case, the impulse characteristic is denoted as 𝑎(𝑡). 
Let’s define the relation between the transient and the impulse 

characteristics.  

Let’s firstly consider the reaction of electric circuit on the impulse 

action of short time duration 𝑡𝑖 = ∆𝑡 (Fig. 4.8,c) 

 𝑓𝑖𝑛(𝑡) = 𝑈𝑚[1(𝑡) − 1(𝑡 − ∆𝑡)],                       (4.7) 

here mU  is impulse amplitude. 

By the reaction definition of an electric circuit on a single step 

function 1(𝑡) (Fig. 4.8,a) or 1(𝑡 − ∆𝑡) (Fig. 4.8,b) is transient 

characteristic ℎ(𝑡) or ℎ(𝑡 − ∆𝑡). 
Then by the overlay principle 

the reaction of an electric circuit on 

external action is defined by the 

formula (4.7) 

𝑓𝑜𝑢𝑡(𝑡) = 𝑈𝑚[ℎ(𝑡) − ℎ(𝑡 − ∆𝑡)] =   

=
ℎ(𝑡)−ℎ(𝑡−∆𝑡)

∆𝑡
𝑈𝑚∆𝑡 =

∆ℎ(𝑡)

∆𝑡
𝑆𝑖, (4.8) 

where ∆ℎ(𝑡) = ℎ(𝑡) − ℎ(𝑡 − ∆𝑡) is 

growth of function ℎ(𝑡); 𝑆𝑖 = 𝑈𝑚∆𝑡 
is area of impulse.  

Let’s ∆𝑡 → 0 and 𝑈𝑚 →
1

∆𝑡
. 

Then the input action goes to the 

delta-function according to formula 

(4.7), because 𝑈𝑚 → ∞ and area 

𝑆𝑖 → 1. Reaction of electric circuit 

according to expression (4.8) is 

 

Fig. 4.8 
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𝑓𝑜𝑢𝑡(𝑡) = lim
∆𝑡→0

∆ℎ(𝑡)

∆𝑡
𝑆𝑖 = ℎ

′(𝑡). 

By definition, the reaction of an electric circuit to a delta-function 

form action is a impulse characteristic, i.e. 

𝑎(𝑡) = ℎ′(𝑡).      (4.9) 

The reaction of an electric circuit to the action of small but finite 

time duration with the impulse area 𝑆𝑖 is determined by the expression 

 𝑓𝑜𝑢𝑡(𝑡) ≈ 𝑎(𝑡)𝑆𝑖.      (4.10) 

The approximate equality (4.10) is more accurate, then the time 

duration of the impulse ∆𝑡 is smaller. As it is noted earlier, the time 

characteristics are determined for electric circuits with zero initial 

conditions. Therefore, the transient characteristic ℎ(𝑡) must be recorded 

as: ℎ(𝑡)1(𝑡). 
Then, according to the expression (4.9) we have 

𝑎(𝑡) =
𝑑

𝑑𝑡
[ℎ(𝑡)1(𝑡)] = ℎ′(𝑡)1(𝑡) + ℎ(𝑡)1′(𝑡) 

(4.11) 

= ℎ′(𝑡)1(𝑡) + ℎ(0)δ(𝑡). 
Expression (4.11) is called the generalized derivative. If at 𝑡 = 0, 

ℎ(0) = 0, then the generalized derivative coincides with the ordinary 

derivative (4.9). 

ℎ(𝑡) = ∫𝑎(𝑡)𝑑𝑡

𝑡

−∞

. 

Let’s consider the examples of time characteristics determination. 

 

Example 4.1.  
Define time characteristics for the circuit on fig.3.7. 

 

Solution. 

1. Transient admittance. In the input circuit is applied single step 

function 

𝑢(𝑡) = 1(𝑡)          (4.12) 

In operation form (table 2.1) 

1(𝑡) =
1

𝑝
= 𝑈(𝑝). 

Expression of operator electric current in electric circuit is 
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𝑖(𝑡) ≑ 𝐼(𝑝) =
𝑈(𝑝)

𝑍(𝑝)
=
1

𝑝

1

𝑟 +
1
𝑝𝐶

=
1

𝑟

1

𝑝 +
1
𝑟𝐶

.             (4.13) 

The original form of electric current in the electric circuit according 

to the Table 2.1 is expressed in the form 

𝑖(𝑡) =
1

𝑟
𝑒−

1
𝑟𝐶 . 

Now the transient conductivity has the form 

𝑌(𝑡) =
𝑖(𝑡)

𝑢(𝑡)
=
𝑖(𝑡)

1
=
1

𝑟
𝑒−

1
𝑟𝐶 .                         (4.14) 

The graph of transient conductivity is depicted in Fig. 4.9, b and the 

input action is described with a single step function (Fig. 4.9, a). 

 
a    b 

Fig. 4.9 

 

2. The impulse conductivity. At the input part of the electric circuit 

a voltage impulse in the delta-function form is acted 

 𝑢(𝑡) = δ(𝑡)        (4.15) 

In the operator form according to Tab. 2.1 we have 

δ(𝑡) ≑ 1 = 𝑈(𝑝). 
Expression of the current operator in the electric circuit is 

𝐿[𝑖(𝑡)] = 𝐼(𝑝) =
𝑈(𝑝)

𝑍(𝑝)
=
1

𝑝

1

𝑟 +
1
𝑝𝐶

=
1

𝑟

1

𝑝 +
1
𝑟𝐶

= 

            (4.16) 

=
1

𝑟

𝑝 +
1
𝑟𝐶 −

1
𝑟𝐶

𝑝 +
1
𝑟𝐶

=
1

𝑟
(1 −

1

𝑟𝐶

1

𝑝 +
1
𝑟𝐶

). 

Here is the degree of numerator and denominator in the image 

forms were the same. Therefore, the allocated whole part in the 
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expression is the unit, and the degree of the numerator was lower, and 

the expression for operator image became the correct fraction. 

Expression for the operator image of impulse conductivity is 

𝑎𝑌(𝑝) =
𝐼(𝑝)

𝑈(𝑝)
=
1

𝑟
(1 −

1

𝑟𝐶

1

𝑝 +
1
𝑟𝐶

). 

Expression for the original of impulse conductivity is 

𝑎𝑌(𝑝) = 𝑎𝑌(𝑡) =
1

𝑟
[δ(𝑡) −

1

𝑟𝐶
𝑒
1
𝑟𝐶] .                 (4.17) 

The graph of impulse conductivity function is depicted in Fig. 4.10, 

b; the form of the input action is delta-function δ(𝑡) is depicted in Fig. 

4.10, a. 

 
a    b 

Fig. 4.10 

 

The impulse characteristic can be found by a generalized derivative 

of the transient characteristic (4.11). By using the expression (4.14) we 

obtain: 

𝑌′(𝑡) = −
1

𝑟2𝐶
𝑒−

1
𝑟𝐶;          Y(0) =

1

𝑟
. 

So, from fornula (4.11) we have 

𝑎𝑌(𝑡) = −
1

𝑟2𝐶
𝑒−

1
𝑟𝐶1(𝑡) +

1

𝑟
δ(𝑡) =

1

𝑟
[δ(𝑡) −

1

𝑟𝐶
𝑒−

1
𝑟𝐶] , 

which coincides with the expression (4.17). 

 

Example 4.2.  
To define the time characteristics for an electric circuit in Fig. 4.11.  

 
Fig. 4.11 
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Solution. 

1. A single step function which is described with expression (4.12) 

acts in the input part of the electric circuit. The current in the electric 

circuit in oscillatory mode is determined similarly to the expression 

(2.46). 

𝑖(𝑡) =
1

ω𝑓𝑟𝑒𝐿
𝑒−δ𝑡 sinω𝑓𝑟𝑒𝑡, 

expression for the voltage on the condenser 𝑢𝐶(𝑡) is similar to the 

expression (2.54) 

𝑢𝐶(𝑡) = 1 −
ω0
ω𝑓𝑟𝑒

𝑒−δ𝑡 sin(ω𝑓𝑟𝑒𝑡 + α). 

So, expression for the transient conductivity 𝑌(𝑡) is 

𝑌(𝑡) =
𝑖(𝑡)

𝑢(𝑡)
=

1

ω𝑓𝑟𝑒𝐿
𝑒−δ𝑡 sinω𝑓𝑟𝑒𝑡.              (4.18) 

Expression for the transient voltage coefficient is  

𝐾𝑈(𝑡) =
𝑢𝐶(𝑡)

𝑢(𝑡)
= 1 −

ω0
ω𝑓𝑟𝑒

𝑒−δ𝑡 sin(ω𝑓𝑟𝑒𝑡 + α).     (4.19) 

Graphs of transient characteristics 𝑌(𝑡) and 𝐾𝑈(𝑡) are shown in 

Fig. 4.12, b and Fig. 4.12, c (the input action is described with the unit 

step function 1(𝑡) (Fig.4.12,a). 

 

 
a 

 
b    c 

Fig.4.12 
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2. Imulse characteristics. At the input part of the electric circuit acts 

a voltage impulse in the delta function form in accordance with the 

expression (4.15). The impulse conductivity is defined as a generalized 

derivative of transient conductivity. From the expression (4.18) we have 

𝑌′(𝑡) =
1

ω𝑓𝑟𝑒𝐿
[𝑒−δ𝑡(−δ) sinω𝑓𝑟𝑒𝑡 + ω𝑓𝑟𝑒𝑒

−δ𝑡 cosω𝑓𝑟𝑒𝑡] = 

=
ω0
ω𝑓𝑟𝑒𝐿

𝑒−δ𝑡 cos (ω𝑓𝑟𝑒𝑡 +
π

2
− α) ;         Y(0) = 0. 

Then according to the formula (4.11) we have 

𝑎𝑌(𝑡) =
ω0
ω𝑓𝑟𝑒𝐿

𝑒−δ𝑡 cos (ω𝑓𝑟𝑒𝑡 +
π

2
− α) . 

Voltage impulse transient coefficient is determined as a generalized 

derivative of the voltage transfer coefficient also. From expression 

(4.19) we have 

𝐾′𝑈(𝑡) =
ω0
ω𝑓𝑟𝑒

[𝑒−δ𝑡(−δ) sin(ω𝑓𝑟𝑒𝑡 + α) + 

+ω𝑓𝑟𝑒𝑒
−δ𝑡 cos(ω𝑓𝑟𝑒𝑡 + α)] =

ω0
ω𝑓𝑟𝑒

𝑒−δ𝑡 sinω𝑓𝑟𝑒𝑡; 

𝐾𝑈(0) = 1 −
ω0
ω𝑓𝑟𝑒

sin α. 

Then by the formula (4.11) we have 

𝑎𝐾𝑈(𝑡) = 1(𝑡)
ω0
ω𝑓𝑟𝑒

𝑒−δ𝑡 sinω𝑓𝑟𝑒𝑡 + (1 −
ω0
ω𝑓𝑟𝑒

sinα) δ(𝑡) = 

=
ω0
ω𝑓𝑟𝑒

𝑒−δ𝑡 sinω𝑓𝑟𝑒𝑡 + (1 −
ω0
ω𝑓𝑟𝑒

sin α)δ(𝑡). 

Graphs of impulse characteristics 𝑎𝑌(𝑡) and 𝑎𝐾𝑈(𝑡) are shown in 

Fig. 4.13, b, Fig. 4.13, c. The input action is mathematically described 

with delta-function (Fig.4.13, a).  

 
a  b    c 

Fig.4.13 
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Problem 4.1.  

Calculate and analyze time characteristics ℎ𝑌21(𝑡), 𝑎𝑌21(𝑡) for 

electrical circuit of the second order (fig. P.3.2). 

Solution. 

Let’s find transient and pulse characteristics ℎ𝑌21(𝑡), 𝑎𝑌21(𝑡) using 

(P.3.1.)  

Transient characteristic: 

ℎ𝑌21(𝑝) =
1

𝑝
𝑌21(𝑝) =

1

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝
2 + 2δ𝑝 +ω0

2)
. 

Its original 

ℎ𝑌21(𝑝) =
1

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
(𝑒𝑝1t − 𝑒𝑝2t).           (P.4.1) 

Accounting numerical calculation, we get from (P.4.1)                    

ℎ𝑌21(𝑝) =
1

(10 + 10) ∙ 4 ∙ 10 ∙ 10−6(−3,82 ∙ 103 + 26,18 ∙ 103)
× 

(P.4.2) 

× (𝑒−3,82∙10
3𝑡 − 𝑒−26,18∙10

3𝑡) = 0,56(𝑒
−

𝑡
0,262∙10−3 − 𝑒

−
𝑡

0,038∙10−3). 

Impulse characteristic. 

𝑎𝑌21(𝑡) = 1 ∙ 𝑌21(𝑝) =
1

(𝑟1 + 𝑟2)𝑟3𝐶
∙

𝑝

𝑝2 + 2δ𝑝 +ω0
2 .       (P.4.3) 

Let’s find original from (P.4.3). As  

𝑎𝑌21(𝑝) =
1

(𝑟1 + 𝑟2)𝑟3𝐶
∙

𝑝

(𝑝−𝑝1)(𝑝−𝑝2)
, 

Then  

𝑎𝑌21(𝑝) =
1

(𝑟1 + 𝑟2)𝑟3𝐶
(
𝑝1

𝑝1−𝑝2
𝑒𝑝1𝑡 +

𝑝2
𝑝2−𝑝1

𝑒𝑝2𝑡) = 

=
1

(𝑟1 + 𝑟2)𝑟3𝐶(𝑝1−𝑝2)
(𝑝1𝑒

𝑝1t−𝑝2𝑒
𝑝2t).                (P.4.4) 

Accounting calculation for i1(t), we get from  (P.4.4) 

𝑎𝑌21(𝑡) =
1

(10 + 10) ∙ 4 ∙ 10 ∙ 10−6(−3,82 ∙ 103 + 26,18 ∙ 103)
× 

× (−3,82 ∙ 103𝑒−3,82∙10
3𝑡 + 26,18 ∙ 103𝑒−26,18∙10

3𝑡) = 

= (1466𝑒
−

𝑡
0,62∙10−3 − 214𝑒

−
𝑡

0,262∙10−3)   Cm/с.       (P.4.5) 
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Graphic of transient characteristic is shown in fig. P.4.1 of pulse 

characteristic – in fig. P.4.2 

 

 
Fig. P.4.1 

 

 
Fig. P.4.2 
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4.4. The convolution integral 

 

In Section 4.2, it was shown how the function 𝑓(𝑡) of the arbitrary 

form can be approximated by the sum of the shifting among themselves 

stepped functions with different amplitudes (see Figure 4.4). Such a 

function may also be represented by the sum of the rectangular impulses 

of short duration ∆𝑡 in time between them (Fig. 4.14): 

𝑓𝑖𝑛(𝑡) ≈ ∑𝑓𝑖𝑛,𝑘(𝑡)

𝑛

𝑘=0

,                                   (4.20) 

where 

𝑓𝑖𝑛,𝑘(𝑡) = 𝑓𝑖𝑛(𝑘∆𝑡)[1(𝑡 − 𝑘∆𝑡) − 1(𝑡 − (𝑘 + 1)∆𝑡)] = 

= 𝑓𝑖𝑛(𝜏)[1(𝑡 − 𝜏) − 1(𝑡 − 𝜏 − ∆𝜏)]. 
Here, as in the expression (4.3), it is accepted that τ = 𝑘∆𝑡 and 

∆𝑡 = ∆τ which is true for small time intervals ∆𝑡. 
In the expression (4.20) 𝑓𝑖𝑛,𝑘(𝑡) is the impulse time duration ∆𝑡 

(shaded time interval in Fig. 4.14) with amplitude 𝑓𝑖𝑛(𝑘∆𝑡). That is, the 

function 𝑓𝑖𝑛(𝑡) can be approximated by the sum of such impulses 

𝑓𝑖𝑛(𝑘∆𝑡). Thus, the initial action can be expressed with the sum of 

impulses of short duration. 

 
Fig. 4.14 

 

To determine the electric circuit reaction the expression (4.10) and 

the electric circuit reaction into the impulse action 𝑓𝑖𝑛,𝑘(𝑡) are used 

𝑓𝑜𝑢𝑡,𝑘(𝑡) ≈ 𝑎(𝑡 − 𝑘Δ𝑡)𝑆𝑖𝑘  , 
where 𝑆𝑖𝑘  is area of k-th 𝑓𝑖𝑛(𝑡). Then 

𝑓𝑜𝑢𝑡,𝑘(𝑡) ≈ 𝑎(𝑡 − 𝜏)𝑓𝑖𝑛(τ)Δ𝜏. 

The total reaction on action 𝑓𝑜𝑢𝑡,𝑘 (𝑡) is determined according to 

the superposition principle (4.1) 
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𝑓𝑜𝑢𝑡(𝑡)  ≈  ∑𝑓𝑜𝑢𝑡,𝑘 (𝑡)

𝑛

𝑘=0

= ∑ 𝑓𝑖𝑛

τ=𝑛∆𝑡

τ=𝑘∆𝑡=0

(τ)𝑎(𝑡 − 𝜏)∆𝜏. 

Here sum on k is replaced on sum on time from τ = 𝑘Δ𝑡 = 0 at 

𝑘 = 0 to τ = 𝑛Δ𝑡 at 𝑘 = 𝑛. 

At time interval Δ𝑡 tends to zero (Δ𝑡 → 0) we have expression: 

𝑓𝑜𝑢𝑡(𝑡) = ∫𝑓𝑖𝑛(𝜏)𝑎(𝑡 − 𝜏)𝑑𝜏

𝑡

0

.                  (4.21) 

The integral (4.21) is analogous to the convolution integral. It is 

also called the Duhamel integral. Here the integration is executed by 

variable τ аnd t is fixed time point in which the reaction 𝑓𝑜𝑢𝑡(𝑡) is 

determined. Formula (4.21) shows that the reaction of the electric circuit 

𝑓𝑜𝑢𝑡(𝑡) at time moment 𝑡 is defined as the sum of reactions of this 

electric circuit at this moment of time from all actions on the electric 

circuit acting on its input clamps at all moments of time preceding to the 

time moment 𝑡. 
In the same way as formula (2.25), the second form of the Duamel 

integral can be written as: 

𝑓𝑜𝑢𝑡(𝑡) = ∫𝑓𝑖𝑛(𝑡 − 𝜏)𝑎(𝜏)𝑑𝜏.

1

0

                   (4.22) 

The reaction of the circuit 𝑓𝑜𝑢𝑡(𝑡) on the complex action 𝑓𝑖𝑛(𝑡) can 

be determined by the transient characteristic ℎ(𝑡). As already noted, the 

input action 𝑓𝑖𝑛(𝑡) can be represented by the sum of partial actions 

𝑓𝑖𝑛,𝑘(𝑡), which is the product of the function growth on the k-th interval 

and per unit step function that is late on the time interval 𝑘Δ𝑡 (see Fig. 

4.4), that is by the expression (4.4) 

𝑓𝑖𝑛(𝑡) = 𝑓𝑖𝑛(0)1(𝑡) +∑∆𝑓𝑖𝑛,𝑘1(𝑡 − 𝑘∆𝑡).

𝑛

𝑘=1

 

The reaction 𝑓𝑜𝑢𝑡,𝑘 (𝑡) of electric circuit on the action 𝑓𝑖𝑛,𝑘(𝑡) is the 

product of the increment of the input action Δ𝑓𝑖𝑛,𝑘 on the transient 

characteristic ℎ(𝑡 − 𝑘Δ𝑡), which is late on the interval 𝑘(Δ𝑡). 
∆𝑓𝑜𝑢𝑡,𝑘(𝑡) = ∆𝑓𝑖𝑛,𝑘ℎ(𝑡 − 𝑘∆𝑡). 

It can be written down with the second order of smallness as 

                          ∆𝑓𝑖𝑛,𝑘 ≈ 𝑓
′
𝑖𝑛
(𝑘∆𝑡)∆𝑡.   (4.23) 
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Here by summation of partial reactions with take into account 

expression (4.23) we have 

𝑓𝑜𝑢𝑡(𝑡) ≈ ∑∆𝑓 𝑜𝑢𝑡,𝑘(𝑡) =

𝑛

𝑘=0

                             (4.24) 

= 𝑓𝑖𝑛(0)ℎ(𝑡) +∑𝑓′𝑖𝑛(𝑘∆𝑡)∆𝑡 ℎ(𝑡 − 𝑘∆𝑡).

𝑛

𝑘=1

 

If now to increase the number of 𝑛 intervals, correspondingly 

reducing the duration of the time interval Δ𝑡, then the input action 

approaches the smooth curve 𝑓𝑖𝑛(𝑡) and the sum in the expression (4.24) 

pass to the integral, and the approximate equality equals the exact: 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑖𝑛(0)ℎ(𝑡) + ∫𝑓
′
𝑖𝑛
(τ)h(t − τ)𝑑𝑡

𝑡

0

,            (4.25) 

𝑘∆𝑡 = τ ; ∆𝑡 → 𝑑𝑡. 
 

This is the third form of the Duamel integral.  

By using the identity of the integrals in the convolution formulas 

(2.25) and (2.26), one can write the fourth form of the Duamel integral 

 𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑖𝑛(0)ℎ(𝑡) + ∫𝑓
′
𝑖𝑛
(𝑡 − 𝜏)ℎ(𝜏)𝑑𝑡

𝑡

0

 

Let’s apply to the integral in the right side of formula (4.25) the 

integration rule by parts (2.5), where 

𝑢 = ℎ(𝑡 − τ); 𝑑𝑉 = 𝑓′𝑖𝑛(τ)𝑑τ;  𝑉 = 𝑓𝑖𝑛(𝜏);  𝑑𝑢 = −ℎ′(𝑡 − 𝜏)𝑑𝜏. 
Then 

∫𝑓′𝑖𝑛(𝜏)ℎ(𝑡 − 𝜏)𝜕𝜏 = ℎ(𝑡 − 𝜏)𝑓𝑖𝑛(𝜏) |
𝑡

0
− ∫ 𝑓𝑖𝑛

𝑡

0

(𝜏)[−ℎ′(𝑡 − 𝜏)𝜕𝜏] =

𝑡

0

 

= 𝑓𝑖𝑛(𝑡)ℎ(0) − 𝑓𝑖𝑛(0)ℎ(𝑡) + ∫𝑓𝑖𝑛(𝜏)ℎ
′(𝑡 − 𝜏)𝑑𝑡.

𝑡

0

      (4.26) 

By substituting the expression (4.26) into expression (4.25), we get 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑖𝑛(𝑡)ℎ(0) + ∫𝑓𝑖𝑛(𝜏)ℎ
′(𝑡 − 𝜏)𝑑𝜏

𝑡

0

.         (4.27) 
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This is the fifth form of the Duamel integral. 

By using the identity of the integrals (3.25) and (3.26) again, we 

have from expression (4.27): 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑖𝑛(𝑡)ℎ(0) + ∫𝑓𝑖𝑛(𝑡 − 𝜏)ℎ
′(𝜏)𝑑𝜏.

𝑡

0

 

This is sixth form Duhamel integral. 

The Duamel integrals are used in calculating the reaction of circuit 

to the action of an arbitrary form in the following sequence: 

1) To calculate the appropriate time characteristic; 

2) To determine the required reaction of electric circuit on action by the 

formulas of the Duamel integral. 

 

Example 4.3.  
The voltage of arbitrary form is applied to the input of electric 

circuit (Fig. 3.7) 

𝑢(𝑡) = 𝑈𝑚𝑒
−α𝑡.    (4.28) 

Let’s find the voltage Uc (t) on the capacitor C. 

Solution. 

1. If the input action and the reaction of the electric circuit is a 

voltage, then the time characteristic of the circuit is found in the form of 

a voltage transient coefficient. To determine the reaction of the circuit 

we use the formula (4.22), where 𝑓𝑜𝑢𝑡(𝑡)  = 𝑢𝑐(𝑡), 𝑓𝑜𝑢𝑡(𝑡)  = 𝑢(𝑡), 
𝑓𝑖𝑛(𝑡 −  τ)  = 𝑢(𝑡 −  𝜏). 

The impulse characteristic 𝑎(𝑡) is the impulse voltage transient 

coefficient 𝑎𝐾𝑈(𝑡); that is, the expression (4.22) has the form: 

𝑢𝑐(𝑡) = ∫𝑢(𝑡 − 𝜏)𝑎𝐾𝑈(𝜏)𝑑𝜏.                                (4.29)

𝑡

0

 

For determination the value of 𝑎𝐾𝑈(𝑡) to write expression for 

𝑎𝐾𝑈(𝑝), by using the value of 𝐼(𝑝) obtained in Example 4.1 according 

to formula (4.16) 

𝑎𝐾𝑈(𝑝) = 𝐼(𝑝)
1

𝑝𝐶
=
1

𝑟

𝑝

𝑝 +
1
𝑟𝐶

1

𝑝𝐶
=
1

𝑟𝐶

1

𝑝 +
1
𝑟𝐶

.             (4.30) 

The original of the expression (4.30) according to Table 2.1 looks 

like 
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𝑎𝐾𝑈(𝑡) =
1

𝑟𝐶
𝑒−

1
𝑟𝐶 .                                        (4.31) 

2. For the integral (4.29) we obtain from the expressions (4.28) and 

(4.31) 

𝑢(𝑡 − 𝜏) = 𝑈𝑚𝑒
−𝛼(𝑡−𝜏);      𝑎𝑘𝑢(𝜏) =

1

𝑟𝐶
𝑒−

𝜏
𝑟𝐶 . 

Then the voltage of the capacitor 𝐶 is 

𝑢𝑐(𝑡) = ∫𝑈𝑚𝑒
−α(𝑡−τ)

1

𝑟𝐶
𝑒−

τ
𝑟𝐶𝑑τ

𝑡

0

=
𝑈𝑚
𝑟𝐶

𝑒−α𝑡∫𝑒
(α−

1
𝑟𝐶
)𝜏
𝑑𝑡 =

𝑡

0

 

=
𝑈𝑚
𝑟𝐶

𝑒−α𝑡
𝑟𝐶

𝛼𝑟𝐶 − 1
𝑒
(α−

1
𝑟𝐶
)𝜏
|
𝑡
0
=
𝑈𝑚
𝑟𝐶

𝑒
−α𝑡[𝑒

(α−
1
𝑟𝐶
)𝑡
−1]

= 

=
𝑈𝑚

1 − α𝑟𝐶
(𝑒−α𝑡 − 𝑒−

1
𝑟𝐶) .                              (4.32) 

To determine the voltage 𝑢𝑐(𝑡) by using the integral expression 

(4.25), where 𝑓𝑖𝑛(0) = 𝑢(0). The transient characteristic ℎ(𝑡) is the 

transient coefficient of transition over the voltage 𝐾𝑈(𝑡). So, ℎ(𝑡 − 𝜏) =
𝐾𝑈(𝑡 − 𝜏); that is, the expression (4.25) takes the form: 

𝑢𝑐(𝑡) = 𝑢(0)𝐾𝑈(𝑡) + ∫
𝑑

𝑑𝜏

𝑡

0

𝑢(𝜏)𝐾𝑈(𝑡 − 𝜏)𝑑𝜏.            (4.33) 

To solve the problem, one must determine the transient 

characteristic 𝐾𝑈(𝑡). To do this, by using the result of Example 4.1 for 

𝐼(𝑝) value by formula (4.13) we write the expression for 𝐾𝑈(𝑝): 

𝐾𝑈(𝑝) = 𝐼(𝑝)
1

𝑝𝐶
=
1

𝑟

1

𝑝 +
1
𝑟𝐶

1

𝑝𝐶
=
1

𝑟𝐶

1

𝑝(𝑝 +
1
𝑟𝐶
)
.     (4.34) 

The original of the expression (4.34) according to Table 2.1 looks 

like 

  𝐾𝑈(𝑡) = 1 − 𝑒
−
1

𝑟𝐶.   (4.35) 

According to the formulas (4.25), (4.28) and (4.35) we obtain 

expressions 

𝑢(0) = 𝑈𝑚; 𝑢𝑖𝑛(τ) = 𝑈𝑚𝑒
−ατ; 

𝑑

𝑑𝜏
[𝑢𝑖𝑛(τ)] = 𝑈𝑚𝑒

−α𝜏(−α) = −α𝑈𝑚𝑒
−ατ;            (4.36) 

𝐾𝑢(𝑡 − τ) = 1 − 𝑒
−
1

𝑟𝐶
(𝑡−τ)

. 
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Then the voltage of the capacitor C according to formula (4.33) 

takes the form 

𝑢𝑐(𝑡) = 𝑈𝑚 (1 − 𝑒
−
1
𝑟𝐶) + ∫(−α𝑈𝑚𝑒

−ατ) [1 − 𝑒−
1
𝑟𝐶
(𝑡−τ)] 𝑑τ

𝑡

0

= 

= 𝑈𝑚 (1 − 𝑒
−
1
𝑟𝐶) − α𝑈𝑚∫𝑒

−ατ [1 − 𝑒−
1
𝑟𝐶
(𝑡−τ)] 𝑑τ =

𝑡

0

 

= 𝑈𝑚 (1 − 𝑒
−
1
𝑟𝐶) − α𝑈𝑚∫𝑒

−ατ

𝑡

0

𝑑τ + α𝑈𝑚𝑒
−
1
𝑟𝐶∫𝑒(

1
𝑟𝐶
−α)τ

𝑡

0

𝑑τ = 

 (4.37) 

= 𝑈𝑚 (𝑒
−ατ − 𝑒−

1
𝑟𝐶) +

α𝑟𝐶

1 − α𝑟𝐶
𝑈𝑚 (𝑒

−ατ − 𝑒−
1
𝑟𝐶) = 

 

=
𝑈𝑚

1−α𝑟𝐶
(𝑒−ατ − 𝑒−

1

𝑟𝐶). 

The result (4.37) coincides with expression (4.32). By comparing 

the formula (4.37) and expression for electric current (3.7) obtained in 

Example 3.2, we can see that the diagram 𝑢𝑐(𝑡) for the electric circuit 

expressed in Fig. 3.7 looks like in Fig. 3.4. 

 

Example 4.4.  
At the electric circuit input (Fig. 3.7) a voltage impulse is applied 

the form of which is shown in Fig. 3.8, where in the time interval [0-t1] 

the input voltage varies exponentially 

𝑢(𝑡) = 𝑈0𝑒
−𝛼𝑡.                 (4.38) 

To determine the electric current i(t) in circuit. 

 

Solution of problem we find by the formula of Duamel integral 

(4.25). 

As transient characteristic, obviously, will be transient conductivity 

𝑌(𝑡) (4.14)). Then expression (4.25) takes the form 

𝑖(𝑡) = 𝑢(0)𝑌(𝑡) + ∫𝑢′(τ)𝑌(𝑡 − 𝜏)𝑑𝜏

𝑡

0

.                 (4.39) 
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Let’s define the components of the expression (4.39). Similarly, to 

expression (4.36), we have 

𝑢(0) = 𝑈0.    (4.40) 

From formula (4.38) we write 

 𝑢(𝜏) = 𝑈0𝑒
−𝛼𝜏;    (4.41) 

 𝑢′(𝜏) = −α𝑈0𝑒
−𝛼𝜏.   (4.42) 

From relation (4.14) we have 

𝑌(𝑡 − 𝜏) =
1

𝑟
𝑒
𝑡−𝜏
𝑟𝐶 .                              (4.43) 

Expression for voltage 𝑢(𝑡) (Fig.3.8) is: 

𝑢(𝑡) = {

0,            at 𝑡 < 0          
𝑈𝑜𝑒

−𝛼𝜏 , at 0 ≤ 𝑡 ≤ 𝑡1
0,            at 𝑡 ≥ 𝑡1.      

   (4.44) 

Expressions for the electric current 𝑖(𝑡) are defined in each interval 

separately. 

1. In the time interval 𝑡 < 0 the input action 𝑢(𝑡) = 0, so electric current 

reaction 𝑖(𝑡) equals to zero also. 

2.  In the time interval 0 ≤ 𝑡 ≤  𝑡1 according to expressions (4.14), (4.39), 

(4.40), (4.42) and (4.43) we get: 

𝑖(𝑡) = 𝑈0
1

𝑟
𝑒−

𝑡
𝑟𝐶 −∫α𝑈0𝑒

−𝛼𝜏

𝑡

0

1

𝑟
𝑒
𝑡−𝜏
𝑟𝐶 𝑑𝑡 = 

=
𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶 −

α𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶∫𝑒

(
1
𝑟𝐶
−𝛼)𝜏

𝑑𝑡

𝑡

0

= 

 (4.45) 

=
𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶 −

𝑈0
𝑟

𝛼𝑟𝐶

1 − 𝛼𝑟𝐶
(𝑒−𝛼𝜏 − 𝑒−

𝑡
𝑟𝐶) = 

=
𝑈0

𝑟(1 − 𝛼𝑟𝐶)
(𝑒−

𝑡
𝑟𝐶 − 𝛼𝑟𝐶𝑒−𝛼t). 

3. In the time interval 𝑡 ≥ 𝑡1 the expression for electric current 𝑖(𝑡) 
is getting by subtracting from expression (4.45) at the time moment 

𝑡 = 𝑡1 the expression for electric circuit reaction on negative jump of 

input voltage: 

𝑢(𝑡1) = 𝑈0𝑒
−𝛼𝑡.   (4.46) 

This reaction according to expressions (4.14) and (4.46) has the 

form:  
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𝑖(𝑡) = 𝑢(𝑡1)𝑌(𝑡 − 𝑡1) = 𝑈0𝑒
−𝛼𝑡1

1

𝑟
𝑒
(𝑡−𝑡1)
𝑟𝐶  

      (4.47) 

=
𝑈0
𝑟
𝑒(

1
𝑟𝐶
−𝛼)𝑡1𝑒−

𝑡
𝑟𝐶 . 

And expression for electric current i(t) in the time interval 𝑡 > 𝑡1 is 

determined from equations (4.14), (4.39), (4.40), (4.42) and (4.43)  

𝑖(𝑡) = 𝑢0
1

𝑟
𝑒−

𝑡
𝑟𝐶 −∫ 𝛼𝑈0

𝑡1

0

𝑒−𝛼𝜏
1

𝑟
𝑒−

𝑡−𝜏
𝑟𝐶 𝑑𝜏 −

𝑈0
𝑟
𝑒
(
1
𝑟𝐶
−𝛼)𝑡1𝑒−

𝑡
𝑟𝐶 = 

                                       (4.48) 

=
𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶 −

𝛼𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶∫ 𝑒

(
1
𝑟𝐶
−𝛼)𝜏

𝑑𝑡 −
𝑈0
𝑟
𝑒
(
1
𝑟𝐶
−𝛼)𝑡1𝑒−

𝑡
𝑟𝐶

𝑡1

0

= 

=
𝑢0

𝑟(1 − 𝛼𝑟𝐶)
[1 − 𝑒(

1
𝑟𝐶
−𝛼)𝑡1] 𝑒−

𝑡
𝑟𝐶 . 

Expressions (4.45) and (4.48) coincide with the corresponding 

expressions (3.15) and (3.16). 

Let’s analyze the electric current 𝑖(𝑡) change over the time in each 

time intervals. 

In the time interval 𝑡 < 0, as already was noted 𝑖(𝑡) = 0. 

At the time 𝑡 = 0, according to the expression (4.45), the electric 

current jumps up to the value of 𝑖(0) =
𝑈0

𝑟
.  

In the time interval 0 ≤ 𝜏 < 𝑡1, the electric current 𝑖(𝑡) varies 

according to the formulas (4.45). Here are the following options: 

1. 𝛼 <
1

𝑟𝐶
. Then α𝑟𝐶 < 1 and exponential function 𝑒−

𝑡

𝑟𝐶 attenuates 

faster than function 𝑒−ατ. However, the maximum value of the first 

exponent is (
𝑢0

𝑟(1−α𝑟𝐶)
) at 𝑡 = 0 and it is more than the maximum value 

of the second exponent (
𝑈0α𝑟𝐶

𝑟(1−α𝑟𝐶)
). Their difference is equals 

𝑈0

𝑟
. 

Therefore, the electric current 𝑖(𝑡) falls from 
𝑈0

𝑟
 при 𝑡 = 0 to its value 

according to expression (4.45) at 𝑡 = 𝑡1: 

𝑖(𝑡1
−) =

𝑈0

𝑟(1−α𝑟𝐶)
(𝑒−

𝑡1
𝑟𝐶 − α𝑟𝐶𝑒−α𝑡1). 

And at 𝑡 = 𝑡1: 
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𝑖(𝑡1
+) =

𝑈0

𝑟(1−α𝑟𝐶)
(𝑒−

𝑡1
𝑟𝐶 − 𝑒−α𝑡1) . 

Obviously, this value is negative and the value of the electric 

current jump is 

  𝑖(𝑡1
+) − 𝑖(𝑡1

−) = −
𝑈0

𝑟
𝑒−𝛼𝑡1.            (4.49) 

2. Let’s 𝛼 =
1

𝑟𝐶
. Then α𝑟𝐶 = 1 and exponential functions 𝑒−

𝑡

𝑟𝐶 and 

𝑒−𝛼𝑡 attenuate with equal velocity. According to the equation (4.45) the 

expression for electric current is 

𝑖(𝑡) =
𝑈0
𝑟
𝑒−𝛼𝑡 =

𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶 . 

At the time moment 𝑡1 the electric current value falls to the value 

𝑖(𝑡1
−) =

𝑈0
𝑟
𝑒−α𝑡1 =

𝑈0
𝑟
𝑒−

𝑡1
𝑟𝐶 . 

This value is positive. 

At time moment 𝑡 = 𝑡1 according to the expression (4.49) electric 

current change to zero by jump on the value 

−
𝑈0
𝑟
𝑒−

𝑡
𝑟𝐶 =

𝑈0
𝑟
𝑒−𝛼𝑡. 

3. At α >
1

𝑟𝐶
 Then α𝑟𝐶 > 1 and exponential function 𝑒−𝛼𝑡 attenuates 

faster than function 𝑒−
𝑡

𝑟𝐶. Expressions (4.45) can be rewritten as 

follows: 

𝑖(𝑡) =
𝑈0

𝑟(𝛼𝑟𝐶−1)
(𝛼𝑟𝐶𝑒−𝛼𝑡 − 𝑒−

𝑡

𝑟𝐶).                       (4.50) 

Here the maximum value of the first exponent (
𝑈0

𝑟(1−𝛼𝑟𝐶))
) more 

than maximal value of the second exponent ( 
𝑈0

𝑟(𝛼𝑟𝐶−1)
) also. Their 

difference equals to 
𝑈0

𝑟
. Thus electric current value 𝑖(𝑡) falls from value 

𝑈0

𝑟
 to its value according to the expression (4.50) at 𝑡 = 𝑡1: 

𝑖(𝑡1
−) =

𝑈0
𝑟(𝛼𝑟𝐶 − 1)

(𝛼𝑟𝐶𝑒−𝛼𝑡1 − 𝑒−
𝑡1
𝑟𝐶). 

This value may become negative with a sufficiently large value 𝑡1. 

At 𝑡 = 𝑡1 the electric current falls by jump to the value according 

to formula (4.48):  

𝑖(𝑡1
+) =

𝑈0
𝑟(𝛼𝑟𝐶 − 1)

(𝑒−𝛼𝑡1 − 𝑒−
𝑡1
𝑟𝐶). 
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Obviously, this value is negative. The value of the current jump is 

also determined by the expression (4.47). 

In the time interval 𝑡 > 𝑡1 electric current 𝑖(𝑡) at 𝛼 <
1

𝑟𝐶
 or at 

𝛼 >
1

𝑟𝐶
 falls to zero in accordance with the expression (4.48), while 

having a negative direction. At 𝛼 =
1

𝑟𝐶
 the electric current remains zero 

value for all 𝑡 > 𝑡1. Forms of electric current 𝑖(𝑡) curves at 𝛼 <
1

𝑟𝐶
, 

𝛼 >
1

𝑟𝐶
, and α =

1

𝑟𝐶
 are shown in Fig. 4.15,а,b,c. 

 

 
a     b 

 

 
c 

Fig. 4.15 

 

Electric current 𝑖(𝑡) in this example we can find other expressions 

of the Duhamel integral, for example, the expression (4.21). Here 𝑢(τ) 
value is determined from equation (4.41). The impulse characteristic, 

obviously, is an impulse conductivity 𝑎𝑌(𝑡) from relation (4.17). 

Then the expression (4.21) looks like 
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𝑖(𝑡) = ∫𝑢(𝜏)𝑎𝑌(𝑡 − 𝜏)𝑑𝜏.                         (4.51) 

𝑡

0

 

Taking into account the expression (4.44), we can find the 

expression for electric current 𝑖(𝑡) separately for each time intervals. 

1. In the time interval 𝑡 < 0 the input action 𝑢(𝑡) = 0, thus 

reaction і(𝑡) equals to zero also. 

2. For time interval 0 ≤ 𝑡 < 𝑡1 according to relations (4.17), (4.41) 

and (4.51) we have 

𝑎𝑌(𝑡 − τ) =
1

𝑟
[δ(𝑡 − τ) −

1

𝑟𝐶
𝑒−

𝑡−τ

𝑟𝐶 ], 

𝑖(𝑡) = ∫𝑈0𝑒
−𝛼𝜏

1

𝑟
[δ(𝑡 − 𝜏) −

1

𝑟𝐶
𝑒−

𝑡−𝜏
𝑟𝐶 ] 𝑑𝜏 =

𝑡

0

 

 (4.52) 

𝑈0
𝑟
[∫𝑒−𝛼τ𝛿(𝑡 − 𝜏)𝑑𝑡 −

1

𝑟𝐶
∫𝑒−𝛼𝜏
𝑡

0

𝑡

0

]. 

The first integral in square brackets is found according to the 

filtering property of the delta function 

∫𝑒−𝛼𝜏𝛿(𝑡 − 𝜏)𝑑𝑡 = 𝑒−𝛼𝜏
𝑡

0

, 

then 

𝑖(𝑡) =
𝑈0
𝑟
[𝑒−𝛼𝜏 −

1

𝑟𝐶
∫𝑒(

1
𝑟𝐶
−𝛼)𝜏𝑑𝑡

𝑡

0

] = 

=
𝑈0
𝑟
[𝑒−𝛼𝜏 +

1

1 − 𝛼𝑟𝐶
(𝑒−

𝑡
𝑟𝐶 − 𝑒−𝛼𝜏)] = 

=
𝑈0

𝑟(1 − 𝛼𝑟𝐶)
(𝑒−

𝑡
𝑟𝐶 − 𝛼𝑟𝐶𝑒−𝛼𝜏). 

4.In the time interval 𝑡 > 𝑡1  expression for electric current 𝑖(𝑡) we 

can find by replacing the upper limit at integration in expression (4.52) 

into 𝑡1:  
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𝑖(𝑡) = ∫ 𝑈0𝑒
−𝛼𝜏

1

𝑟

𝑡1

0

[𝛿(𝑡 − 𝜏) −
1

𝑟𝐶
𝑒−

𝑡−𝜏
𝑟𝐶 ] 𝑑𝑡 = 

=
𝑈0
𝑟
[∫ 𝑒−𝛼𝜏𝛿(𝑡 − 𝜏)𝑑𝑡 −

1

𝑟𝐶
∫ 𝑒−𝛼𝜏

𝑡1

0

𝑡1

0

𝑒−
𝑡−𝜏
𝑟𝐶 𝑑𝑡] ; 

The first integral in square brackets is calculated within the time 

interval 0 ÷ 𝑡1 and delta function δ(𝑡 − τ) acts at 𝑡 > 𝑡1, therefore, for 

the filtering property of the delta functions (4.5) and (4.6) we have 

∫ 𝑒−𝛼𝜏𝛿(𝑡 − 𝜏)𝑑𝑡 = 0.

𝑡1

0

 

So, 

𝑖(𝑡) = −
𝑈0
𝑟

1

𝑟𝐶
𝑒−

𝑡
𝑟𝐶∫ 𝑒

(
1
𝑟𝐶
−𝛼)𝜏

𝑑𝑡

𝑡1

0

= 

=
𝑈0

𝑟(1 − 𝛼𝑟𝐶)
[1 − 𝑒(

1
𝑟𝐶
−𝛼)𝑡1] 𝑒−

𝑡
𝑟𝐶 . 

This expression coincides with expression according to formula 

(4.48). 

 

Problem 4.3. 

Calculate and analyze (in common case) of output voltage for 

linear circuit of the first order, using convolution method (Duhamel 

integral) by impulse action of complicated form. Calculation circuit is 

shown in fig. P.4.8, form of input signal – in fig. P.4.9. It’s necessary 

calculate voltage 𝑢𝐿  of inductance 𝐿; 𝑢𝐿 = 𝑢2. 

 

         
Fig.P.4.8           Fig.P.4.9 
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Solution.  

Let’s define transient characteristic ℎ𝐾𝑈(𝑡) for the given circuit  

(Fig.P.4.8). In operational form  

ℎ𝐾𝑈(𝑝) = 𝐾𝑈21(𝑝)
1

𝑝
,                              (P.4.8) 

where 𝐾𝑈21(𝑝) - operational function (operational voltage transfer 

coefficient). 

In fig.P.4.8 we designate nodes 1, 2 and bases node 0. 

Let’s compile matrix of node voltage (MNV) for nodes 1, 2 

∆=

[
 
 
 
1

𝑟
−
1

𝑟

−
1

𝑟

1

𝑟
+
1

𝑝𝐿
+
1

𝑟]
 
 
 
. 

Operational voltage transfer coefficient 

𝐾𝑈21(𝑝) =
∆12
∆11

; 

∆12=
1

𝑟
;      ∆11=

1

𝑟
+
1

𝑝𝐿
+
1

𝑟
=
2

𝑟
+
1

𝑝𝐿
. 

Then 

𝐾𝑈21(𝑝) =
1

𝑟 (
2
𝑟 +

1
𝑝𝐿)

=
1

2
∙

𝑝

𝑝 +
𝑟
2𝐿

.            (P.4.9) 

Now, accounting (P.4.8) , (P.4.9), we get  

ℎ𝐾𝑈(𝑝) =
1

2
∙

𝑝

𝑝 +
𝑟
2𝐿

∙
1

𝑝
=
1

2
∙

1

𝑝 +
𝑟
2𝐿

.                (P.4.10) 

Original of ( P.4.10) 

ℎ𝐾𝑈(𝑡) =
1

2
𝑒
−
𝑡
2𝐿
𝑟 =

1

2
𝑒−

𝑟
2𝐿
𝑡.                         (P.4.11) 

In fig. P.4.9 input signal assume meanings  

{
 
 

 
 
𝑢1(𝑡) = 0 at 𝑡 < 0;                           

𝑢1(𝑡) = 𝐴 +
𝐵 − 𝐴

𝑡1
 at 0 ≤ 𝑡 < 𝑡1;

𝑢1(𝑡) = 𝐵 at 𝑡1 ≤ 𝑡 < 𝑡2;                

𝑢1(𝑡) = 0 at 𝑡 > 𝑡2.                          

                  (P.4.12) 
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At 𝑡 < 0 output voltage 𝑢2(𝑡) = 0, as input action 𝑢1(𝑡) = 0. At 

section 0 ≤ 𝑡 < 𝑡1 voltage 𝑢2(𝑡) can be find in according Duhamel 

integral formula 

𝑓𝑜𝑢𝑡(𝑡) = 𝑓𝑖𝑛(0)ℎ(𝑡) + ∫𝑓𝑖𝑛
′

𝑡

0

(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏.         (P.4.13) 

Here, accounted (P.4.12), (P.4.13) we get at this section 

{
 
 
 
 

 
 
 
 
𝑓𝑖𝑛(0) = 𝑢11(0) = 𝐴;                             

ℎ(𝑡) = ℎ𝐾𝑈(𝑡) =
1

2
𝑒−

𝑟
2𝐿
𝑡
;                      

ℎ(𝑡 − 𝜏) = ℎ𝐾𝑈(𝑡 − τ) =
1

2
𝑒−

𝑟
2𝐿
(𝑡−𝜏)

;

𝑓𝑖𝑛(𝑡) = 𝑢11(𝑡) = 𝐴 +
𝐵 − 𝐴

𝑡1
𝑡;              

𝑓𝑖𝑛(τ) = 𝑢11(τ) =
𝐵 − 𝐴

𝑡1
τ.                      

                  (P.4.14) 

Accounted (P.4.14), we get from (P.4.13) at this section 

𝑢2(𝑡) = 𝑢11(0)ℎ𝐾𝑈(𝑡) + ∫𝑢11
′ (𝜏)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡

0

𝑑𝜏 = 

=
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

−𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 (𝑒−

𝑟
2𝐿
𝑡 − 1) = 

=
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

−𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

−𝑟𝑡1
= 

= [
𝐴

2
+
(𝐵 − 𝐴)𝐿

−𝑟𝑡1
] 𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

−𝑟𝑡1
.              (P.4.15) 

At section 𝑡1 ≤ 𝑡 < 𝑡2 integration interval from 0 to 𝑡 is divided at 

two parts: from 0 to 𝑡1 and from 𝑡1 to 𝑡. Then in according (P.4.13) we 

get for this interval 

𝑢2(𝑡) = 𝑢11(0)ℎ𝐾𝑈(𝑡) + ∫ 𝑢11
′ (𝜏)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡1

0

𝑑𝜏 + 

+ ∫𝑢12
′ (𝜏)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡

𝑡1

𝑑𝜏.                      (P.4.16) 
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Here 𝑢12(𝑡) = 𝐵; 𝑢12(𝜏) = 𝐵; 𝑢12
′ (𝜏) = 0. 

Then at section 𝑡1 ≤ 𝑡 < 𝑡2, accounted (P.4.15) and the second 

integral in (P.4.16) equal to 0 [𝑢12(𝜏) = 0], we get 

𝑢2(𝑡) =
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 (𝑒−

𝑟
2𝐿
𝑡 − 1) = 

= [
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1)] 𝑒−

𝑟
2𝐿
𝑡.              (P.4.17) 

At section 𝑡 > 𝑡2 integrated interval from 0 to 𝑡 is divided at 

through sections: from 0 to 𝑡1, from 𝑡1 to 𝑡2 and from 𝑡2 to 𝑡. Then in 

according (P.4.13) we get at this interval 

𝑢2(𝑡) = 𝑢11(0)ℎ𝐾𝑈(𝑡) + ∫ 𝑢11
′ (τ)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡1

0

𝑑𝜏 + 

+ ∫ 𝑢12
′ (𝜏)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡2

𝑡1

𝑑𝜏 − 𝑢12(𝑡2)ℎ𝐾𝑈(𝑡 − 𝑡2) +    (P.4.18) 

+ ∫𝑢13
′ (𝜏)ℎ𝐾𝑈(𝑡 − 𝜏)

𝑡

𝑡2

𝑑𝜏. 

Here second integral is equal zero, as 𝑢12(τ) = 0; 𝑢12(𝑡2) = 𝐵; 

ℎ𝐾𝑈(𝑡 − 𝑡2) =
1

2 
𝑒−

𝑟

2𝑙
(𝑡−𝑡2). Third integral is equal to zero too, as 

𝑢13(t) = 0 at this interval, where from 𝑢13(τ) = 0. There for at section 

𝑡 > 𝑡2 we get from (P.4.18), accounted (P.4.17) 

𝑢2(𝑡) = [
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1)] 𝑒−

𝑟
2𝐿
𝑡 − 𝐵

1

2
𝑒−

𝑟
2𝐿
(𝑡−𝑡2) = 

= [
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1)] 𝑒−

𝑟
2𝐿
𝑡 −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡𝑒−

𝑟
2𝐿
𝑡2 = 

[
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1) −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2] 𝑒−

𝑟
2𝐿
𝑡.     (P.4.19) 

Therefore, output voltage in fig. 4.8 by input impulse action are:  

at section 𝑡 < 0 

𝑢2(𝑡) = 0; 

at section 0 ≤ 𝑡 < 𝑡1 
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𝑢2(𝑡) = [
𝐴

2
+
(𝐵 − 𝐴)𝐿

−𝑟𝑡1
] 𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

−𝑟𝑡1
; 

at section 𝑡1 ≤ 𝑡 < 𝑡2 

𝑢2(𝑡) = [
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1)] 𝑒−

𝑟
2𝐿
𝑡
; 

at section 𝑡 > 𝑡2 

𝑢2(𝑡) = [
𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡 − 1) −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2] 𝑒−

𝑟
2𝐿
𝑡
 

Lets check the solution, using other formula Duhamel integral  

𝑓𝑜𝑢𝑡(𝑡) = ∫𝑓𝑖𝑛

𝑡

0

(𝜏)𝑎(𝑡 − 𝜏)𝑑𝜏. 

Let’s find impulse characteristic 𝑎𝐾𝑈(𝑡) for the circuit (fig. P.4.8). 
In operational form 

𝑎𝐾𝑈(𝑝) = 𝐾𝑈21(𝑝). 

Using (P.4.9), we get 

𝑎𝐾𝑈(𝑝) = 𝐾𝑈21(𝑝) =
1

2
∙

𝑝

𝑝 +
𝑟
2𝐿

=
1

2
∙
𝑝 +

𝑟
2𝐿  − 

𝑟
 2𝐿

𝑝 +
𝑟
2𝐿

= 

=
1

2
(1 −

𝑟

2𝐿
∙

1

𝑝 +
𝑟
2𝐿

). 

Now original in according expansion formula  

𝑎𝐾𝑈(𝑡) =
1

2
[𝛿(𝑡) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
𝑡  ]. 

At 𝑡 < 0 its evidence, 𝑢2(𝑡) = 0. 

At section 0 ≤ 𝑡 < 𝑡1 we get 

{
 

 𝑎(𝑡 − τ) = 𝑎𝐾𝑈(𝑝) =
1

2
[δ(𝑡 − τ) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−τ)  ] ;                      

𝑓𝑖𝑛(𝑡) = 𝑢11(𝑡) = 𝐴 +
𝐵 − 𝐴

𝑡1
𝑡; 𝑓𝑖𝑛(τ) = 𝑢11(τ) = 𝐴 +

𝐵 − 𝐴

𝑡1
τ.

 

Now 

𝑢2(𝑡) = ∫𝑢11(τ)𝑎𝐾𝑈(𝑡 − τ)

𝑡

0

𝑑τ = 
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= ∫(𝐴 +
𝐵 − 𝐴

𝑡1
τ) ∙

1

2
[δ(𝑡 − τ) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−τ)  ] 𝑑τ =

𝑡

0

 

=
𝐴

2
∫δ(𝑡 − τ)𝑑τ

𝑡

0

−
𝐴𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡∫𝑒−

𝑟
2𝐿
τ𝑑τ

𝑡

0

+ 

+
𝐵 − 𝐴

2𝑡1
∫τδ(𝑡 − τ)𝑑τ

𝑡

0

−
(𝐵 − 𝐴)𝑟

4𝐿𝑡1
𝑒−

𝑟
2𝐿
𝑡∫τ𝑒−

𝑟
2𝐿
τ𝑑τ

𝑡

0

. 

Here 

∫δ(𝑡 − τ)𝑑τ

𝑡

0

= 1; ∫ 𝑒−
𝑟
2𝐿
τ𝑑τ

𝑡

0

=
1
𝑟
2𝐿

𝑒−
𝑟
2𝐿
τ|
0

𝑡

=
2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡 − 1) ;  

∫τδ(𝑡 − τ)𝑑τ

𝑡

0

= 𝑡;   ∫ τ𝑒−
𝑟
2𝐿
τ𝑑τ

𝑡

0

=
2𝐿

𝑟
[
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡) ∙ 𝑒−

𝑟
2𝐿
𝑡]. 

Then 

𝑢2(𝑡) =
𝐴

2
−
𝐴𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡 2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡 − 1) +

𝐵 − 𝐴

2𝑡1
𝑡 − 

−
(𝐵 − 𝐴)𝑟

4𝐿𝑡1
𝑒−

𝑟
2𝐿
𝑡 2𝐿

𝑟
[
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡) ∙ 𝑒−

𝑟
2𝐿
𝑡] = 

=
𝐴

2
−
𝐴

2
∙ (1 − 𝑒−

𝑟
2𝐿
𝑡) +

𝐵 − 𝐴

2𝑡1
𝑡 − 

(P.4.20) 

−
(𝐵 − 𝐴)

2𝑡1
[
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡) ∙ 𝑒−

𝑟
2𝐿
𝑡] 𝑒−

𝑟
2𝐿
𝑡 = 

=
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 +

𝐵 − 𝐴

2𝑡1
𝑡 −

(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

𝑟𝑡1
−
𝐵 − 𝐴

2𝑡1
𝑡 = 

= [
𝐴

2
−
(𝐵 − 𝐴)𝐿

𝑟𝑡1
] ∙ 𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

𝑟𝑡1
, 

That is way result  (P.4.20) at the section 0 ≤ 𝑡 < 𝑡1 is coincided 

which (P.4.15). 

At section 𝑡1 ≤ 𝑡 < 𝑡2 we get 
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𝑢2(𝑡) = ∫ 𝑢11(𝜏)𝑎𝐾𝑈(𝑡 − 𝜏)

𝑡1

0

𝑑𝜏 + ∫𝑢12(𝜏)𝑎𝐾𝑈(𝑡 − 𝜏)

𝑡

𝑡1

𝑑𝜏 = 

= ∫ (𝐴 +
𝐵 − 𝐴

𝑡1
𝜏) ∙

1

2
[𝛿(𝑡 − 𝜏) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−𝜏)  ]

𝑡1

0

𝑑𝜏 + 

+ ∫𝐵

𝑡

𝑡1

∙
1

2
[𝛿(𝑡 − 𝜏) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−𝜏)  ] 𝑑𝜏 = 

=
𝐴

2
∫ 𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

−
𝐴𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡∫ 𝑒−

𝑟
2𝐿
τ𝑑τ

𝑡1

0

+
𝐵 − 𝐴

2𝑡1
∫ 𝜏𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

− 

−
(𝐵 − 𝐴)𝑟

4𝐿𝑡1
𝑒−

𝑟
2𝐿
𝑡∫ 𝜏𝑒−

𝑟
2𝐿
𝜏𝑑𝜏

𝑡1

0

+
𝐵

2
∫𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡1

−
𝐵𝑟

4𝐿
∫𝑒−

𝑟
2𝐿
𝜏𝑑𝜏

𝑡

𝑡1

. 

Here 

∫ 𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

= 0;  ∫ 𝑒−
𝑟
2𝐿
𝜏𝑑𝜏

𝑡1

0

= 
2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡 − 1) ; 

∫ 𝜏𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

= 0; ∫ 𝜏𝑒−
𝑟
2𝐿
𝜏𝑑𝜏

𝑡1

0

= 
2𝐿

𝑟
[
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡1) ∙ 𝑒

−
𝑟
2𝐿
𝑡1] ;  

∫𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡1

= 1; ∫ 𝑒−
𝑟
2𝐿
𝜏𝑑𝜏

𝑡

𝑡1

=
2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡 − 𝑒−

𝑟
2𝐿
𝑡1). 

Then 

𝑢2(𝑡) = −
(𝐵 − 𝐴)

2𝑡1
𝑒−

𝑟
2𝐿
𝑡 [
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡1) ∙ 𝑒

−
𝑟
2𝐿
𝑡1] − 

−
𝐵

2
𝑒−

𝑟
2𝐿
𝑡2𝑒−

𝑟
2𝐿
𝑡 +

𝐵

2
𝑒−

𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 =                (P.4.21) 

=
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 −

𝐴

2
𝑒−

𝑟
2𝐿
𝑡1 −

(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)

2𝑡1
× 

× (
2𝐿

𝑟
− 𝑡1) ∙ 𝑒

−
𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2𝑒−

𝑟
2𝐿
𝑡 +

𝐵

2
𝑒−

𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 = 
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= [
𝐴

2
−
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡1 − 1) −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2] ∙ 𝑒−

𝑟
2𝐿
𝑡. 

That is way result (4.21) at the section 𝑡1 ≤ 𝑡 < 𝑡2 is coincided 

which (P.4.15) 

At section 𝑡 > 𝑡2 we get 

𝑢2(𝑡) = ∫ 𝑢11(𝜏)𝑎𝐾𝑈(𝑡 − 𝜏)

𝑡1

0

𝑑𝜏 + ∫ 𝑢12(𝜏)𝑎𝐾𝑈(𝑡 − 𝜏)

𝑡2

𝑡1

𝑑𝜏 + 

+ ∫𝑢13(𝜏)𝑎𝐾𝑈(𝑡 − 𝜏)

𝑡

𝑡2

𝑑𝜏 = 

= ∫ (𝐴 +
𝐵 − 𝐴

𝑡1
𝜏) ∙

1

2
[𝛿(𝑡 − 𝜏) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−𝜏)  ]

𝑡1

0

𝑑𝜏 + 

+ ∫ 𝐵

𝑡2

𝑡1

∙
1

2
[𝛿(𝑡 − 𝜏) −

𝑟

2𝐿
𝑒−

𝑟
2𝐿
(𝑡−𝜏)  ] 𝑑𝜏. 

Here, as 𝑢13(𝜏) = 0, then we get 

𝑢2(𝑡) =
𝐴

2
∫ 𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

−
𝐴𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡∫ 𝑒−

𝑟
2𝐿
𝜏𝑑𝜏

𝑡1

0

+ 

+
𝐵 − 𝐴

2𝑡1
∫ 𝜏𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

−
(𝐵 − 𝐴)𝑟

4𝐿𝑡1
𝑒−

𝑟
2𝐿
𝑡∫ τ𝑒−

𝑟
2𝐿
𝜏𝑑𝜏 +

𝑡1

0

 

+
𝐵

2
∫ 𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡2

𝑡1

−
𝐵𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡 ∫ 𝑒−

𝑟
2𝐿
𝜏𝑑𝜏

𝑡2

𝑡1

. 

where   

∫ δ(𝑡 − τ)𝑑τ

𝑡1

0

= 0;  ∫ 𝑒−
𝑟
2𝐿
τ𝑑τ

𝑡1

0

= 
2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡1 − 1) ; 

∫ 𝜏𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡1

0

= 0; ∫ 𝜏𝑒−
𝑟
2𝐿
𝜏𝑑𝜏

𝑡1

0

= 
2𝐿

𝑟
[
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡1) ∙ 𝑒

−
𝑟
2𝐿
𝑡1] ; 
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∫ 𝛿(𝑡 − 𝜏)𝑑𝜏

𝑡2

𝑡1

= 0; ∫ 𝑒−
𝑟
2𝐿
𝜏𝑑𝜏

𝑡2

𝑡1

=
2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡2 − 𝑒−

𝑟
2𝐿
𝑡1). 

Then 

𝑢2(𝑡) = −
𝐴𝑟

4𝐿
𝑒−

𝑟
2𝐿
𝑡 2𝐿

𝑟
(𝑒−

𝑟
2𝐿
𝑡1 − 1) − 

𝐵 − 𝐴

2𝑡1
𝑒−

𝑟
2𝐿
𝑡 [
2𝐿

𝑟
− (

2𝐿

𝑟
− 𝑡1) ∙ 𝑒

−
𝑟
2𝐿
𝑡1] − 

−
𝐵

2
𝑒−

𝑟
2𝐿
𝑡 +

𝐵

2
(𝑒−

𝑟
2𝐿
𝑡1 − 𝑒−

𝑟
2𝐿
𝑡) = 

(P.4.22) 

=
𝐴

2
𝑒−

𝑟
2𝐿
𝑡 −

𝐴

2
𝑒−

𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 −

(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡 + 

=
𝐵 − 𝐴

2𝑡1
(
2𝐿

𝑟
− 𝑡1) 𝑒

−
𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2𝑒−

𝑟
2𝐿
𝑡 + 

+
𝐵

2
𝑒−

𝑟
2𝐿
𝑡1𝑒−

𝑟
2𝐿
𝑡 = [

𝐴

2
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
(𝑒−

𝑟
2𝐿
𝑡1 − 1) −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2] 𝑒−

𝑟
2𝐿
𝑡 . 

That is way result (P.4.22) at the section 𝑡 > 𝑡2 is coincided which 

(P.4.19) 

Consequently output voltage in the circuit of fig.P.4.8 if input 

signal is changed in fig. P.4.7 has the next form:  

𝑡 < 0,   𝑢2(𝑡) = 0; 

 0 ≤ 𝑡 < 𝑡1,   𝑢2(𝑡) = [
𝐴

2
−
(𝐵 − 𝐴)𝐿

𝑟𝑡1
] 𝑒−

𝑟
2𝐿
𝑡 +

(𝐵 − 𝐴)𝐿

𝑟𝑡1
; 

𝑡1 ≤ 𝑡 < 𝑡2, 𝑢2(𝑡) = [
𝐴

2
−
(𝐵 − 𝐴)𝐿

𝑟𝑡1
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡1] ∙ 𝑒−

𝑟
2𝐿
𝑡
; 

𝑡 > 𝑡2, 𝑢2(𝑡) = [
𝐴

2
−
(𝐵 − 𝐴)𝐿

𝑟𝑡1
+
(𝐵 − 𝐴)𝐿

𝑟𝑡1
𝑒−

𝑟
2𝐿
𝑡1 −

𝐵

2
𝑒−

𝑟
2𝐿
𝑡2] ∙ 𝑒−

𝑟
2𝐿
𝑡
 

Graphics of voltage u2(t) is shown in fig.P.4.10 
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Fig.P.4.10 

 

 

4.5. The convolution integral for envelope curves 

 

In radio engineering the tasks of transient processes study in high-

frequency oscillation circuits under the modulation high-frequency 

oscillations (Fig. 4.16) action on them are often found. 

These processes are described by the  

𝑓𝑖𝑛(𝑡) = 𝐹𝑖𝑛(𝑡) cos[𝜔c𝑡 + 𝜓𝑖𝑛(𝑡)],   (4.53) 

where Fin(t) and ψ𝑖𝑛(𝑡) are the amplitude and initial phase of high 

frequency oscillation; ωc is the cyclic frequency of carrier high 

frequency oscillation. Functions Fin(t), 𝜓𝑖𝑛(𝑡) slowly vary in time. 

Function 𝐹𝑖𝑛(𝑡) is the envelope curve of the high-frequency oscillation 

𝑓𝑖𝑛(𝑡). 
 

 
Fig. 4.16 
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The calculation of the transition process is simplified, if we confine 

ourselves by describing only the envelop curve of high-frequency 

oscillations. 

Let’s on a resonant contour acts the signal describing by the 

expression (4.53). To define the reaction 𝑓𝑜𝑢𝑡(𝑡). 
To use the formula of the Duamel integral (4.21). Assume that the 

impulse characteristic of the resonant circuit has the form 

𝑎(𝑡) = 𝐴(𝑡) cos(𝜔𝑓𝑡 +𝜑𝑓),  (4.54) 

where 𝐴(𝑡) is an envelop curve; 𝜔𝑓 is the own frequency of oscillation 

contour; 𝜑𝑓 of is initial phase of free oscillations. 

To substitute formulas (4.53.) and (4.54) in the expression (4.21): 

𝑓𝑜𝑢𝑡(𝑡) = ∫𝑓𝑖𝑛(𝜏)𝑎(𝑡 − 𝜏)𝑑𝜏

𝑡

0

=                       (4.55) 

= ∫𝐹𝑖𝑛(𝜏)

𝑡

0

cos[𝜔𝑐𝜏 + 𝜓𝑖𝑛(𝜏)]𝐴(𝑡 − 𝜏) cos[𝜔𝑓(𝑡 − 𝜏) + 𝜑𝑓] 𝑑𝜏. 

To convert the expression (4.55) into the cosines product: 

𝑓𝑜𝑢𝑡(𝑡) =
1

2
∫𝐹𝑖𝑛(𝜏) cos[(𝜔𝑐 −𝜔𝑓)𝜏 + 𝜔𝑓𝑡 + 𝜓𝑖𝑛(𝜏) + 𝜑𝑓] ×

𝑡

0

 

× 𝐴(𝑡 − 𝜏)𝑑𝜏 +    (4.56) 

+
1

2
∫𝐹𝑖𝑛(𝜏) cos[(𝜔𝑐 +𝜔𝑓)𝜏 − 𝜔𝑓𝑡 + 𝜓𝑖𝑛(𝜏) − 𝜑𝑓]𝐴(𝑡 − 𝜏)𝑑𝜏

𝑡

0

. 

The second integral in expression (4.56) is close to zero, since the 

integration is performed for a high frequency signal (ω𝑐 +ω𝑓). The 

area of the positive and negative half-waves of which are mutually 

destroyed on the interval of integration. 

Тому  

𝑓𝑜𝑢𝑡(𝑡) ≈
1

2
∫𝐹𝑖𝑛(𝜏)

𝑡

0

𝐴(𝑡 − 𝜏)cos[(𝜔𝑐 −𝜔𝑓)𝜏 + 

+𝜔𝑓𝑡 + 𝜓𝑖𝑛(𝜏) + 𝜑𝑓]𝑑𝜏.    (4.57) 

We can write the expression (4.57) through the instantaneous 

complex values: 
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𝑓𝑜𝑢𝑡(𝑡) ≈
1

2
∫𝐹𝑖𝑛(𝜏)

𝑡

0

𝐴(𝑡 − 𝜏)Re [𝑒𝑗(𝜔𝑐−𝜔𝑓)𝜏𝑒𝑗𝜓𝑖𝑛(𝜏)] 𝑑𝜏 = 

Re [
1

2
∫𝐹𝑖𝑛(𝜏)

𝑡

0

𝐴(𝑡 − 𝜏)𝑒𝑗∆𝜔𝜏𝑑𝜏] ,                   (4.58) 

where 𝐹𝑖𝑛(𝜏) = 𝐹𝑖𝑛(𝜏)𝑒
𝑗𝜓𝑖𝑛(𝜏) is the complex envelop curve of input 

signal; ∆𝜔 = 𝜔𝑐 −𝜔𝑓 is the absolute contour disorder. 

From the expression (4.58) the complex envelop curve of reaction 

is 

𝐹𝑜𝑢𝑡(𝑡) = 𝐹𝑜𝑢𝑡(𝑡)𝑒
𝑗𝜓𝑜𝑢𝑡(𝑡) =

1

2
∫𝐹𝑖𝑛(𝜏)

𝑡

0

𝐴(𝑡 − 𝜏)𝑒𝑗∆𝜔𝜏𝑑𝜏. 

If the phase of the input signal 𝜓𝑖𝑛(𝜏) = const and absolute 

contour disorder ∆𝜔 ≈ 0, then 

𝐹𝑜𝑢𝑡(𝑡) =
1

2
∫𝐹𝑖𝑛(𝜏)

𝑡

0

𝐴(𝑡 − 𝜏)𝑒𝑗∆𝜔𝜏𝑑𝜏.                (4.59) 

Expression (4.59) is a convolution of the envelop curves of the 

input signal and impulse characteristic of the electric circuit and it is 

called the convolution integral for the envelop curves. 

 

Example 4.5.  

To calculate the envelop curve of the electric current and 𝑖(𝑡) in the 

sequential oscillation circuit (Fig. 4.11), when it is switched by the 

harmonic voltage, which envelop curve is a stepwise function (Fig. 

4.17,a): 

𝑢(𝑡) = 𝑈𝑚 ∙ 1(𝑡). 
If the input action is the voltage and the electric current is the 

reaction, then the impulse characteristic should be taken as impulse 

conductivity 𝑎𝑌(𝑡). In the example 4.2 for a circuit (Fig. 4.11) it was 

determined by the formula 

𝑎𝑌(𝑡) =
𝜔0
𝜔𝑓𝐿

𝑒−𝛿𝑡 cos (𝜔𝑓 +
𝜋

2
− 𝛼) . 

Obviously, that its envelop curve is written as 𝐴𝑌(𝑡) =
𝜔0

𝜔𝑓𝐿
𝑒−𝛿𝑡. 
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Fig. 4.17 

 

Then by the formula (4.59) the envelop curve of electric current is 

expressed as 

𝑖(𝑡) =
1

2
∫𝑢(𝜏)𝐴𝑌(𝑡 − 𝜏)𝑑𝜏 =

1

2
∫𝑈𝑚 ∙ 1(𝑡)

𝑡

0

𝑡

0

𝜔0
𝜔𝑓𝐿

𝑒−𝛿(𝑡−𝜏)𝑑𝜏 = 

=
𝜔0
2𝜔𝑓𝐿

𝑈𝑚𝑒
−𝛿𝑡∫𝑒𝛿𝜏𝑑𝜏 =

𝜔0
2𝜔𝑓𝐿𝛿

𝑈𝑚𝑒
−𝛿𝑡𝑒𝛿𝜏|

0

𝑡𝑡

0

= 

=
𝜔0

2𝛿𝜔𝑓𝐿
𝑈𝑚(1 − 𝑒

−𝛿𝑡). 

Graph of the electric current і(t) is shown in Fig.4.17,b, where  

𝐼𝑚 =
ω0

2δω𝑓𝐿
𝑈𝑚. 

Consequently, the amplitude of the electric current oscillation in 

the contour increases smoothly.  

 

 

Methodic instruction 

 

By study material of section “Method of convolution integral” to 

begin with acquiring essence of  superposition in electrical circuit and 

order its application. Impotent  role have circuit time characteristics – 

reaction of the circuit to standard pulse influence. It’s necessary 

distinguish transient and pulse characteristics, in spite of its dimensions 

(dimension of pulse characteristic is equal to dimension of transient 

characteristic, divided by second). The convolution integral is used for 

calculation transient processes.        
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Special attention it’s necessary to convolution integral by 

calculation passing  signal of complicated forms through electrical 

circuits. The input action is divided on separate intervals. By that circuit 

reaction at any time moment on a given interval is equal to reaction on 

this interval plus reaction of the circuit on input signal, which action at 

all moment on previous intervals. 

Literature: [1] - [5]; [7]; [9]; [10]; [14 - 16] 

 

Questions for self checking 

 

1. What are circuit operational functions? What are varieties of 

them? 

2. What is connected circuit operational function with circuit 

complex function? 

3. Give an example of transient processes calculation with help 

circuit operational function. 

4. Explain sense of superposition method in transient processes 

theory. 

5. Determine standard test influence and connection between of 

them. 

6. What of time characteristic are you known? 

7. Show order of transient processes in electric circuit calculates. 

8. What particularity of convolution method calculates if input 

action has gap of the first and second kind?    
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5. METHODS OF TRANSIENT PROCESSES  ANALYSES IN 

THE NONLINEAR CIRCUITS 

 

5.1. Particularity of transient processes in nonlinear circuits 

 

Transient processes in nonlinear circuits are write down by 

nonlinear diferential equations, which haven’t common solution 

methods. Character of these equations dependents on input voltage, and 

superposition principle isn’t used. That is way, standard test signals, 

reactions on which are complete definite dynamic property of the circuit 

for example, unit step function 1(𝑡) or impulse function 𝛿(𝑡) for 

nonliear circuits. Transfer operation function 𝐻(𝑝) and frequency 

characteristic 𝐻(𝑗ω) aren’t are absent too. 

At the same time transient processes in nonlinear circuits are more 

diverse, then in linear circuits and corresponded peculiarity are used for 

working out of different elektrotechnical devices, which can be realizes 

in linear circuit impossible.  

Using of the different methods dependence on peculiarity of 

concrete problem and on level of computer technique, which is can be 

used worker. 

It is necessary to see, in nonlinear circuits the physical processes 

have be privies analyzed before calculation.  

 

 

5.2. Integrate method of approximation   

 

Integrate method of approximation is used if it’s possible to pick up 

approximate analytical expression for nonlinearity in a given problem, 

which permit to compile differential equation for solution in analytical 

form. It is possible seldom and for the equations of non high order. 

Let’s consider example of transient processes in circuit for fig. 5.1, 

a, where constant voltage includes to series connected nonlinear two-

port 𝑁𝑇(𝑟) and inductive coil. Transient process is wrote down by 

differential equation 

𝑢𝐿 + 𝑢𝑟 + 𝑢𝑁𝑇 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑟𝑖 + 𝑓(𝑖) = 𝑈.                       (5.1) 
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Let’s characteristic 𝑖 = 𝑓(𝑢𝑁𝑇) (fig. 5.1,b) can be approximate on 

the same interval be parabola of the second order 𝑖 = 𝑎𝑢𝑁𝑇
2  or 𝑢𝑁𝑇 =

√
𝑖

𝑎
. Then differential equation becomes in form 

𝐿
𝑑

𝑑𝑡
(𝑎𝑢2) + 𝑟𝑎𝑢2 + 𝑢 = 𝑈                                    (5.2) 

or 

2𝐿𝑎𝑢
𝑑𝑢

 𝑑𝑡
+ 𝑟𝑎𝑢2 + 𝑢 = 𝑈                                     (5.3) 

whence after division of variable we get 

𝑡 = −2𝐿𝑎∫
𝑢

𝑟𝑎𝑢2 + 𝑢 − 𝑈
𝑑𝑢

𝑈

0

= 

(5.4) 

=
𝐿

𝑟
(ln  

𝑈

𝑈 − 𝑟𝑖 − √
𝑖
𝑎

+ 
1

Δ
 ln
2𝑟√𝑎𝑡  + 1 − Δ 

2𝑟√𝑎𝑡 + 1 +  Δ
−М ), 

where Δ = √(4𝑟𝑎𝑈 + 1) ; М =
1

Δ
ln

1− Δ

1 + Δ
 . 

Function 𝑡 = 𝑓(𝑖) can’t be represent as open function 𝑖 = φ(𝑡), 
therefore for construction graphic 𝑖 = φ(𝑡) its necessary to give the 

several meaning 𝑖 and define accordance meaning 𝑡. 
 

 

5.3. Graphic integration method  

 

Graphic integration methods are enough labor-consuming and used 

for comparatively simple problem, for example, for calculate circuits, 

which are describe differential equations with division of variable. Here 

it is possible construction of a function graphic, curve of which limits 

area, which proportional accordance meaning of time.   

Let’s consider application of this method for fig. 5.1, a. 

Let’s divide variable in equation (5.1) 

𝑑𝑡 = 𝐿
1

𝑈 − 𝑟𝑖𝑓(𝑖)
𝑑𝑖.                                   (5.5) 
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a    b 

Fig. 5.1. Switching rL-circuit witch nonlinear two-port:  

a – circuit, b – V.A.C. of two-port 

 

 
Fig. 5.2. Performance of graphic integration method  

for calculate of the circuit 

 

  
Let’s integrate left and right parts by accordance variables. Then 

accounting zero initial conditions, we get 

𝑡 = ∫𝑑𝑡

𝑡

0

= ∫
𝐿       

𝑈 − 𝑟𝑖 − 𝑓(𝑖)

𝑖

0

𝑑𝑖.                              (5.6) 

Let’s construct graphic of dependence    

φ(𝑖) =
𝐿

𝑈 − 𝑟𝑖 −  𝑓(𝑖)
.                                          (5.7) 

From these graphic of area (regarding scale) we can find 

dependence 𝑡 = 𝑓(𝑖) or 𝑖 = φ(𝑡) (current 𝑖 in fig. 5.2). 

 

 

5.4. Method of phase plane 

 

By investigation of transient processes in nonlinear electrical 

circuits usually dependence of its parameters on times and in accordance 

of these by construct graphics time 𝑡 is lay out along abscess axis and 
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investigate parameters: current, voltage, value of charge – along 

ordinate axes. But can be lay out investigate parameters (𝑖, 𝑢, 𝑄) along 

abscess axis and along ordinate axes – velocity of these values in time 

(𝑑𝑖/𝑑𝑡, 𝑑𝑢/𝑑𝑡, 𝑑𝑄/𝑑𝑡). 
Coordinate plane, on which along one axes (usually along abscess 

axis) investigation value x is lay out, and along other axes (usually along 

ordinate axis) – velocity of these values in time у = 𝑑𝑥/𝑑𝑡 is cold phase 

plane. That is way time is absent on the graphic, but graphic gives the 

full information about process.    

Transient process on complex plane are imaged by the same strait 

or curve, if it describe by differential equation no more second order. 

Method of phase plane isn’t used practically for circuit of more second 

order. 

Change state of system can be image by motion the same point on 

complex plane. These pointer is cold «representation» or «production». 

Co-ordinates of representation pointer х and у define its position on 

phase plane and characterizes state of process at a given moment time. 

At time representation pointer moves and describe the line, which is 

cold “phase trajectory”. Kind of phase trajectory depends on circuit and 

its parameters. 

By periodic process phase trajectory is closed circle (for linear 

circuit that is circumference or ellipse), which representation pointer 

describe during each period. Phase trajectory for the none periodic 

process is not circumference line. 

In the upper half plain derivative of coordinate у > 0, hence 

representation pointer can be move only to the right – in direction 

increasing meaning х. In the lower half plain у < 0, representation 

pointer can be move only to the left. Consequently representation 

pointer move only clockwise direction. Dependence from initial 

condition we get difference phase trajectory, which never intersect. On 

the abscise excise 𝑑х/𝑑𝑡 = 0, then phase trajectory cross these excise 

under right angle. 

Family of phase trajectory, which images processes in a given 

circuit is cold “phase portrait”. Phase portrait allow envelope all totality 

of move in a system, which may be arose in considered system. 

Conclusion about moves may be without advance founding analytical 
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expressions integral of initial equations even and then, when these 

expressions can’t be received (that is very important). 

Points of phase plane, where simultaneously 𝑑х/𝑑𝑡 = 0 and 

𝑑у/𝑑𝑡 = 0, are called “special points”. They correspond balance 

conditions (immobility) of considered circuit and may be steady and non 

steady. 

Special point, through which doesn’t though one phase trajectory 

and which is surrounded by closed trajectories, is named «centre». 

Centre corresponds regime of irreversible balance.  

Special point, which is asymptotical for the phase trajectories, is 

named «focus». Focus is named «resistant», if image point approach to 

them, “non resistant”, - if one move away. 

Special point, through which phase trajectories move, is named 

«knot». If move along phase trajectories has direction to knot, then such 

knot is named “resistant”, if move along phase trajectories has direction 

from knot, - “non resistant”. 

For transient processes (oscillate, aperiodic e.t.c.) in linear circuit 

of the first and second order are the phase portraits, witch which can be 

compare phase portrait of investigatory circuit. For the some nonlinear 

circuit their phase portraits, but number of varieties of such circuit are 

more great. Therefore their phase portraits are very difficulty. 

Phase portraits are compile, as a rule, for the circuit without energy 

source, but in the same case can be receive phase portrait in the frost 

regime. 

For construct graphic of dependence 𝑖(𝑡) it’s necessary to define 

the time moments, which correspond to pointers of phase trajectory. 

Time interval 𝑡, during of which transition is accomplished from k-th 

point (𝑥𝑘, у𝑘) of phase trajectory to the close (k+1)-th point (𝑥𝑘, у𝑘+1), 

can approximate calculate by the next in the same way. As у = 𝑑𝑥/𝑑𝑡, 
then 

Δ𝑡 = ∫
1

у
𝑑𝑥.

𝑥𝑘+1

𝑥𝑘

 

Let’s mark 
1

у
= 𝑓(𝑥). In according with ”theorem about average” 

we get 

Δ𝑡 = 𝑓(𝜀)(𝑥𝑘+1 − 𝑥𝑘) = 𝑓(𝜀)Δ𝑥,  (𝑥𝑘 < ε < 𝑥𝑘+1). 
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By little interval Δ𝑡 and monotonous changed у in this interval may 

receiver 

𝑓(ε) ≈
1

у𝑎𝑣
, 

where 

у𝑎𝑣 =
у + у𝑘+1

2
. 

Then 

Δ𝑡 ≈
𝑥

у𝑎𝑣
. 

In fig. 5.3 several phase portraits for linear circuit (free running) 

and special points and graphics of dependences 𝑥 = 𝑓(𝑡) (for one phase 

trajectories), which define accordance phase portraits, are shows. 

Let’s conceder circuit fig. 5.1, a and construct phase trajectory of 

transient processes for its (accounted forts regime). 

 
a   b 

 
c d e f 

 
g h i j 

Fig. 5.3. Phase portraits and graphics of dependences 𝑥(𝑡)  
in linear circuits (free regime): 

 a, b – non subside oscillations; c, d – decreasing oscillations;  

i, f – increasing oscillations; increasing aperiodic processes;  

g, h – decreasing aperiodic processes 



110 

Let’s differential equation (5.1) in form 
𝑑𝑖

𝑑𝑡
=

1

𝐿[𝑈– 𝑟𝑖– 𝑓(𝑖)]
,                                             (5.8) 

Give different meaning of 𝑖, and find accordance meaning 𝑑𝑖/𝑑𝑡 
(fig. 5.4). Giving graphic testifies about aperiodic increasing character 

of transient processe witch steady state meanings 𝑑𝑖/𝑑𝑡 = 0, 𝑖 = 𝐼у. 

Dependence 𝑖(𝑡) can be receive from fig. 5.4, if segment on 

abscissa from 0 to 𝐼у to divide on small intervals Δ𝑖, fined у𝑎𝑣 =

(𝑑𝑖/𝑑𝑡)𝑎𝑣 and determine accordance meaning Δ𝑡. 
 

 
Fig. 5.4. Phase trajectory of transient processes  

in circuit fig. 5.1, a 

 

 

5.5. Method of successive approximations 

 

These method consist in successive closer definition privies 

receiving a different way initial approximation. Founding of this 

approximation is very cumbersome and difficult operation. 

Let’s consider circuit of fig. 5.1, a. Let’s substitute nonlinear two-

port NT (r) and linear resistance r for equivalent nonlinear two-port, 

using method of summing up volt-ampere characteristic. Characteristic 

of equivalent nonlinear two-port 𝑖(𝑢𝑟 + 𝑢𝑁𝑇) is showed in fig. 5.5, b.   

Differential equation of these circuit 

𝑢𝐿 + 𝑢𝑟𝑁𝑇 = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑓1(𝑖) = 𝑈                           (5.9) 

is nonlinear, but it is possible in the first approximation to laniaries it by 

means substitution curve 𝑖(𝑢𝑟 + 𝑢𝑁𝑇) by strait line 𝑖′(𝑢) (fig. 5.5, b). 
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This line goes through beginning of coordinates and point on 

characteristic 𝑖(𝑢𝑟 + 𝑢𝑁𝑇), which corresponds of study state conditions. 

All resistances are linear in these regime then study state mining  

=
𝑈

𝑟1𝑠𝑡
=

𝑈

𝑟 + 𝑟𝑁𝑇𝑠𝑡
,                                       (5.10) 

where 

𝑟1𝑠𝑡 = tg α. 
 

 
Fig. 5.5 Method of successive approximations: 

a – graphics of dependences 𝑖(𝑡); 
b – VAC 𝑖(𝑢); c - graphics of dependences 𝑢(𝑡) 

 

Differential equation for such circuit is linear 

𝐿
𝑑𝑖′

𝑑𝑡
+ 𝑟1𝑠𝑡𝑖

′ = 𝑈.                                     (5.11) 

Solution of these equation 

𝑖′ = 𝐼 (1– 𝑒 − 
 𝑟1𝑠𝑡
𝐿
  𝑡) .                               (5.12) 
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Let’s construct graphic of dependence 𝑖′(𝑡) for linear circuit (fig. 

5.5, a). Let’s used nonlinear characteristic 𝑖(𝑢𝑟 + 𝑢𝑁𝑇) for founding 

points of curve 𝑢′(𝑡). Graphic construction of dependence 𝑢′(𝑡) is 

shown in fig. 5.5 for two points (a and b). That is way, we perform the 

first stage of closer definition solution. Here we used non strait line 𝑖′(𝑡) 
(see fig. 5.5, b), but initial nonlinear characteristic 𝑖(𝑢𝑟 + 𝑢𝑁𝑇).  

Graphic of dependence 𝑢′(𝑡) is constructed for next closer 

definition of solution. Using expression (5,9), we get 

𝑖 =
1

𝐿
∫(𝑈 −  𝑢) 𝑑𝑡.

𝑡

0

                                 (5.13) 

That allows to use method of graphic integration and find 

correspond current 𝑖𝑘 (fig. 5.5, c) for the arbitrary time moment 𝑡𝑘 (with 

accounting of scale) 

𝑖𝑘 =
𝑆𝑘
𝐿
.                                               (5.14) 

Assuming different times moments 𝑡1,  𝑡2 e.g., may by find 

meaning of currents 𝑖1, 𝑖2 e.t.c. and construct in fig. 5.5, a new curve 

𝑖"(𝑡), which exactly shows express dependence current from time, then 

approximate function (5.12). Using this curve and nonlinear 

characteristic 𝑖(𝑢𝑟 + 𝑢𝑁𝑇) we can construct dependence 𝑢"(𝑡), as it 

shows in fig. 5.5 for two pointes (c and d). 

Further again assume meanings of time and more accurate 

dependence 𝑖(𝑡). It is necessary to note this demands verification on 

convergence.  

 

 

5.6. Mating intervals method  

 

Idea of mating intervals method consist in breaking the process on 

series following one after the other intervals, inside of which transient 

process may be exactly or approximately writing down by linear or 

integrate nonlinear differential equation. Integrate constants in this 

equation are define from limit conditions, accounting demand of 

solution continuity (this operation is cold mating).        

Mating intervals method is universal, but calculation becomes 

cumbersome for the circuit of the high order and by long during 
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transient processes and by necessary high exactly be means decreasing 

of select intervals. By calculation can by computers but method of final 

intervals is more comfortable.  

Let’s conceder mating intervals method for the circuit fig. 5.1, a. 

Let’s divide volt-ampere characteristic on section for the piece 

ways linear approximation (fig. 5.6, a). Then: 

 
a    b 

Fig. 5.6. Mating intervals method: 

a – piece – wise-linear approximation of VAC; 

b – graphic of dependence 𝑖(𝑡) 
 

For the first section  

𝑖 =
𝑖1
𝑢1
=
𝑢

𝑟1
; 

𝑟1 =
𝑢 1
𝑖1

;                                               (5.15) 

𝑢 = 𝑟1𝑖.     (5.16) 

For the second section 

𝑖 = 𝑖1 +
𝑖2 − 𝑖1 

𝑢2 − 𝑢1 
(𝑢– 𝑢1) = 𝑖1 +

𝑢 − 𝑢1
𝑟2

; 

𝑟2 =
𝑢2 − 𝑢1
𝑖2  − 𝑖1

;                                     (5.17) 

𝑢 =  𝑟2𝑖 + 𝑢1 (1–
𝑟2
𝑟1
) .                              (5.18) 

Using receiving meanings, we get instead equation (5.1) two linear 

equations: 

For the first section 

𝑟1𝑖 + 𝑟𝑖 +
𝑑𝑖

𝑑𝑡
= 𝐸 = 𝐸1 by  0 ≤ 𝑖 ≤ 𝑖1;   0 ≤ 𝑡 ≤ 𝑡1.    (5.19) 

For the second section 
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𝑟2𝑖 + 𝑟𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
= 𝐸 − 𝑢1 (1 −

𝑟2
𝑟1
) = 𝐸2               (5.20) 

by 𝑖1 ≤ 𝑖 ≤ 𝑖2; 𝑡1 ≤ 𝑡 ≤ 𝑡2. 
Solutions of differential equation for these sections are: 

𝑖 =
𝐸1

𝑟1 + 𝑟
+ 𝐴1𝑒

− 
𝑟1+ 𝑟
𝐿

 𝑡    by  0 ≤ 𝑡 ≤ 𝑡1;                  (5.21) 

𝑖 =
𝐸2

𝑟2 + 𝑟
 + 𝐴2𝑒

− 
𝑟1+ 𝑟
𝐿

 (𝑡−𝑡1)   by  𝑡1 ≤ 𝑡 ≤ 𝑡2.           (5.22) 

Integration constant 𝐴1 is find from condition, that by 𝑡 = 0, 𝑖 = 0 

𝐴1 = −
𝐸1

𝑟1 +  𝑟
 

Then for the first section 

𝑖 =
𝐸1

𝑟1 + 𝑟
(1– 𝑒− 

𝑟1+ 𝑟
𝐿

 𝑡) ,  by   0 ≤ 𝑡 ≤ 𝑡1.            (5.23) 

Substitution in this equation 𝑖 = 𝑖1 and 𝑡 = 𝑡1 gives 

𝑖1 =
𝐸1

𝑟1 +  𝑟
(1– 𝑒− 

𝑟1+ 𝑟
𝐿

𝑡1) ,                         (5.24) 

where find time moment 

𝑡1 = −
𝐿

𝑟1 +  𝑟
ln (1 −

𝑟1 + 𝑟

𝐸1
𝑖1) .                    (5.25) 

Integration constant 𝐴2 is find from equation for the second 

section.  

By 𝑡 = 𝑡1 and 𝑖 = 𝑖 1   

𝐴2 = 𝑖1 −
𝐸2

𝑟2 +  𝑟
. 

Equation for the second section 

𝑖 =
𝐸2

𝑟2  +  𝑟
+ (𝑖1 −

𝐸2
𝑟2 +  𝑟

) 𝑒− 
𝑟1+ 𝑟
𝐿

 (𝑡−𝑡1), by  𝑡1 ≤ 𝑡 ≤ 𝑡2.  (5.26) 

Time moment 𝑡2 is find from condition, that by 𝑖 = 𝑖2, 𝑡 = 𝑡2. 

Than 

𝑖2 =
𝐸2

𝑟2 + 𝑟
+ (𝑖1 −

𝐸2
𝑟2 + 𝑟

) 𝑒−
𝑟1+𝑟
𝐿

 (𝑡2−𝑡1),              (5.27) 

where from we find time moment 𝑡2: 

𝑡2 = 𝑡1 −
𝐿

𝑟2 +  𝑟
ln [1 +

𝑟2 +  𝑟

𝐸2
(𝑖1 − 𝑖2)].              (5.28) 
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Using equations for the different sections we can build dependence 

𝑖 = φ(𝑡) kind of which is shown in fig. 5.6, b. 

 

 

5.7. Fined increment method (of successive sections) 
 

Given method is more common method (numerical integration), but 

it demands the large work expenditure. Time interval are divided into 

enough little time intervals 𝑡 ( integrate step) and differentials changed 

by final increments during of this time interval. Further transfer to the 

Taylor series for the solution of differential equation. As Taylor series is 

infinite then its necessary to limit the same numbers of its component. If 

the lower first component has second order, then method is name 

method by Euler. 

Receiving pointers can be trace on graphic. If this pointers are strait 

line. Then this method is named Euler method. For more exactly 

solution equation between pointers may be method by Adams and 

method by Runge-Kutta. All thesе methods (Euler, Adams, Runge-

Kutta) have general name “Fined increment method or method of 

successive sections”. 

Let’s considere circuit in fig. 5.1, a. Characteristic of nonlinear 

two-port is shows in fig. 5.7, a. 

 
a   b 

Fig. 5.7. Fined increment method: 

a – VAC; b – graphic of dependence 𝑖(𝑡) 
 

Nonlinear differential equation (5.1) may be represented in form 

(5.8).  
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Let’s change derivative 𝑑𝑖/𝑑𝑡 by relation of final increment. We 

get approximation equation 

Δ𝑖 ≈
1

𝐿
[𝑈– 𝑟𝑖– 𝑓(𝑖)]Δ𝑡,                                       (5.29) 

Let’s divide transient processes time into row of small intervals Δ𝑡. 
Then we get for any (k+1)-th interval (k = 0, 1,2 …) 

Δ𝑖𝑘+1 = 𝑖𝑘+1 − 𝑖𝑘 ≈
1

𝐿
[𝑈– 𝑟𝑖𝑘 − 𝑓(𝑖𝑘)]Δ𝑡,                (5.30) 

where 𝑖𝑘 and 𝑖𝑘+1 – instantaneous meanings of current in beginning and 

in end of considered time interval.       

That is way, it’s possible step by step to calculate row of 

instantaneous meaning currents: using initial meaning current 𝑖0 may by 

define current to the end of the first interval 𝑖1and using meaning 𝑖1 – 

current 𝑖2 etc (fig. 5.7, b). 

It’s comfortable to perform calculate in table form, for example 

table 5.1. 

Table 5.1 
k 𝑡𝑘 = 𝑘Δ𝑡 𝑖𝑘 𝑟𝑖𝑘  𝑓(𝑖𝑘) 𝑈 − 𝑟𝑖𝑘 − 𝑓(𝑖𝑘) Δ𝑖𝑘+1 𝑖𝑘+1 = 𝑖𝑘 + Δ𝑖𝑘+1 

0 0 𝑖0 0 0 𝑈 Δ𝑖1  𝑖1 =  𝛥𝑖1 

1 𝑡1 = Δ𝑡 𝑖1 𝑟𝑖1 𝑓(𝑖1) 𝑈 − 𝑟𝑖1 − 𝑓(𝑖1) Δ𝑖2 𝑖2 =  𝛥𝑖2 

2 𝑡2 = 2Δ𝑡 𝑖2 𝑟𝑖2 𝑓(𝑖2) 𝑈 − 𝑟𝑖2 − 𝑓(𝑖2) Δ𝑖3 𝑖3 =  𝛥𝑖3 

... … … … ... ... ... … 

 

Result of solution is more exactly (see fig. 5.7), when time interval 

Δ𝑡 is lesser. But if total number of intervals is increase the common 

errors of calculation is increase too. That is basic shortage of this 

method. Before named may be very little by using computers. 

 

 

5.8. Method of state space 

 

Differential equations by calculation transient processes in the 

nonlinear  electrical circuits can be compile as in classical form and in 

form of “state equations“. 

Selecting of variable in Kirchhoff equations for nonlinear circuits 

have the same peculiarity. If circuit includes one or the same 

nonlinearity, then as variables comfortable to take not current and 

voltages but flax linkages and charges as in linear circuits because 
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characteristics of nonlinear reactive two-ports are given in form weber-

ampere or charge-voltage characteristic. Besides, if characteristics of 

nonlinear two-ports consists breaking off the first order, flax linkages 

and charges hasn’t jumpers on the this section of characteristics.      

Order of equations in the nonlinear circuit coincides witch quantity 

reactive linear and nonlinear reactive two-ports. For example, circuit 

witch one inductance is described by nonlinear differential equation of 

the first order  

 𝑓1 (
𝑑ψ

𝑑𝑡
, ψ, 𝑡) = 0.                                         (5.31) 

This equation it’s necessary by weber-ampere characteristic of two-

port. 

Ψ = ψ(𝑖),     (5.32) 

which may be given analytically, graphically or in form table.  

Equation (5.31) can by ratting down in form state equations. 
𝑑ψ

𝑑𝑡
=  𝑓2(ψ, 𝑡).                                           (5.33) 

Selection form of writing down for nonlinear differential equation 

defines by method of solution for that problem. Let’s used method of 

numeral integration for calculate of state equations. 

Let’s considered circuit in fig. 5.8. Lets Weber-ampere 

characteristic ψ = 𝑓1(𝑖) or 𝑖 = 𝑓2(ψ). Choose flax linkage as state 

space ψ. Right down state equation 
𝑑ψ

𝑑𝑡
= 𝑈– 𝑟𝑓2(ψ).                                            (5.34) 

 Solution of this equation 

Ψ = ψ(0) + ∫𝑈𝑑𝑡

𝑡

0

– 𝑟∫𝑓2

𝑡

0

(ψ)𝑑𝑡.                     (5.35) 

Let’s solve this equation by numeral method, taking step of 

integration 𝑇 current 𝑖 = 𝑓2(ψ) as constant. Then for the same k-ht step 

of integration we get equation 

Ψ[(𝑘 + 1)𝑇] = ψ(𝑘𝑇) + 𝑈𝑇– 𝑟𝑖(𝑘𝑇)𝑇,    (5.36) 

where 𝑖(𝑘𝑇) = 𝑓2[ψ(𝑘𝑇)]. 
From structure of this equation, for solution initial equation (5.34) 

was used method of finite increments (sequence intervals). 
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Fig. 5.8. Nonlinear circuit of the first order 

 

 
Fig. 5.9. Nonlinear circuit of the second order 

 

Let’s calculate transient processe in circuit of fig. 5.1, a, where 

nonlinear two-port have volt-ampere characteristic in fig. 5.1, b. Here as 

state space we may chose current 𝑖. Then state equations  
𝑑𝑖

𝑑𝑡
= −

𝑟

𝐿
𝑖 +

1

𝐿
𝑈 −

1

𝐿
𝑈𝑁𝑇(𝑖),                             (5.37) 

where 𝑈𝑁𝑇(𝑖) – is characteristic of  nonlinear two-port. 

Solution of equation (5.37) is 

𝑖 = 𝑒− 
𝑟
𝐿
 𝑡 𝑖(0) +

1

𝐿
∫ 𝑒−

𝑟
𝐿
 (𝑡−𝜏)

𝑡

0

𝑈𝑑𝜏 −
1

𝐿
∫𝑒− 

𝑟
𝐿 
(𝑡−𝜏)

𝑡

0

𝑈𝑁𝑇(𝑖)𝑑𝜏,  (5.38) 

where 𝑖(0) – initial condition. 

Assuming the same assumption (constancy voltage on nonlinear 

two-port of integrate step), we get rated formula 

𝑖[(𝑘 + 1)𝑇] =
𝑒−

𝑟
𝐿
𝑇 

𝑖(𝑘𝑇)
+
1

𝐿
 (𝑒−

𝑟
𝐿
𝑇 − 1) (−

𝐿

𝑟
)𝑈– 

−
1

𝐿
(𝑒−

𝑟
𝐿
 𝑇 −  1) (− 

𝐿

𝑟
)𝑈𝑁𝑇(𝑘𝑇).                       (5.39) 

The circuit of the second order describes by two nonlinear 

differential equation of the first order or one equation of the second 
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order. Let’s in circuit all three to ports are nonlinear. Their 

characteristics are: 

𝑈 = 𝑓1(𝑖)   or  𝑖 = 𝑓2(𝑈1);                             (5.40) 

𝛹 = 𝑓3(𝑖)   or  𝑖 = 𝑓4(𝜓);                             (5.41)  
𝑄 = 𝑓5(𝑢3)   or  𝑢3 = 𝑓6(𝑄).                           (5.42) 

For this circuit may by right down the next equation 
𝑑𝑄

𝑑𝑡
= 𝑓4(𝜓);                                            (5.43) 

𝑓1(𝑖) +
𝑑𝜓

𝑑𝑡
+ 𝑓6(𝑄) = 𝑈.                                (5.44) 

This system can be lead to one nonlinear differential equation of 

the second order. Differentiating equation (5.44) (in according rules of 

differentiation of no open function) and to take the placing (5.43), we 

get 

𝑑2𝜓

𝑑𝑡2
+ [
𝑑𝑓1
𝑑𝑖

𝑑𝑓4
𝑑𝜓
]
𝑑𝜓

𝑑𝑡
+
𝑑𝜓6
𝑑𝑄

𝑓4(𝜓) = 𝑈.               (5.45) 

This system may be writing down in form state equations 
𝑑𝑄

𝑑𝑡
= 𝑓4 (𝜓);    

𝑑ψ

𝑑𝑡
= −𝑓1[𝑓4(𝜓)]–  𝑓6(𝑄) + 𝑈.        (5.46) 

Circuit including, 𝑛 nonlinear reactive two-ports, is rout down in 

common with help system of nonlinear differential equations of the first 

order. If variables are state variables, then state equations of the circuit 

in matrix form are rout down as   

𝑑𝑿/𝑑𝑡 = 𝑨(𝑿)𝑿 + 𝑩𝑾,                                 (5.47) 

where 𝑿 – state vector of n-th order, which includes currents of 

inductive two-ports and voltages of capacitance two-ports (or flax 

linkages and changes); 𝑨(𝑿) – matrix of the coefficients with seize 

𝑛 × 𝑛, elements of which depends on state variables; 𝑩 – matrix of the 

constant coefficients with seize 𝑚 × 𝑛 (𝑚 – number of voltages and 

currents sources); 𝑾 – vector of  voltages and currents sources. 

 

 

5.9. Methods of averaging 

 

Methods of averaging are based on assumption, which not always 

possible: parameter of the circuit is changed very small and therefore it 
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may be assume constant on this interval and equals its averaging 

meaning. 

Primitive variant of such method is first approach, where value of 

impedance of nonlinear two-port is assumed constant during all 

transient processe. But this impedance is defined very rough, since 

averaging is performed only between initial and final meanings. 

These methods are more develop for alternative and common 

periodic currents, where any circuit coordinate (envelope of sinusoid 

amplitude, constant component) is changed low and may be assume as 

constant value. 

By slow changing of amplitude envelope allows to perform variant 

of averaging methods, which is cold as method of slowly changing 

amplitude. Mathematic operations of this method reduce to presentation 

of envelope in form harmonic series and equation of the circuit is 

integrated in bound of period. Then all harmonic component gives zero 

and only enough simple approximate solution, which corresponds to the 

constant components and which showing the changing of basic (first) 

harmonic amplitude in transient processe (without components). 

For circuit of periodic current with constant component the 

correspond variant of averaging method (method of slowly changing of 

constant component) gives approximation solution for constant 

component (without alternative component). 

As example let’s considered the problem. 

          

Problem 5.5  

Capacitor which capacitance 𝐶 = 100 mcF is charged to voltage 

𝑈 = 40 V. Define current by discharge this capacitor on nonlinear 

resistance two-port, characteristic of which is given in table 5.4. 

Table 5.4 

U V 0 5 10 20 30 40 

I A 0 0,05 0,11 0,22 0,295 0,33 

 

Solution.  

Let’s we used method of successive approximations for solution. 

Let’s linearize of volt-ampere characteristic of nonlinear two-port 

in accordance fig. 5.10, b.  
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Fig. 5.10 

a – graphics of the dependence 𝑖(𝑡); b – VAC and its linearity;  

c – circuit; d – graphics of the dependences 𝑢(𝑡) 
 

Find dependence 𝑢𝑁𝑇(𝑡) = 𝑢𝑟(𝑡) for linear circuit. It’s known, 

solution of equation for rC – circuit in free regime is 

𝑢 𝑟𝑓 = 𝐴𝑒
−𝑝𝑡 = 𝐴𝑒−

𝑡
𝜏, 

where 𝑟 = 40/0.33 = 121.2 Ohms; 𝑟𝐶 = 121.2 ∙ 100 ∙ 10 = 0.012 s. 

Using independent initial conditions 𝑢с(0) = 40 V and equation of 

the circuit 𝑢𝐶 + 𝑢𝑘 = 0, find (account , the forced component of voltage 

equals zero) 

𝑢𝑟 = −40𝑒 
−83,3𝑡V, 

or for comfortable construction 

𝑢𝑟 = 40𝑒
−83,3𝑡V. 

Let’s construct voltage  𝑢𝑁𝑇(t)  in fig. 5.10, d  (curve 1) using dates 

of table 5.5  (first approximation). 

Then voltage 𝑢𝑁𝑇(t) is carried on VAC (fig. 5.10, b). We get the 

first approximation of current 𝑖(𝑡) (curve 1. fig. 5.10, a). 

As 𝑢𝑐 = 𝑢𝑁𝑇 =
1

С
 ∫ 𝑖𝑑𝑡 
𝑡

0
 (on absolute value) it is possible fined 

second approximation of voltage 𝑢NT(𝑡),if calculate area under curve 

𝑖(𝑡). 



122 

Table 5.5 

t,s 

The first 

approximation 

The second 

approximation 
The third approximation 

u, V i, A 
S, 

mm
2 u, V i, A 

S, 

mm
2
 

u, V i, A 

0 

0,005 

0,01 

0,015 

0,02 

0,03 

0,04 

40 

26,5 

17,5 

11,5 

7,5 

3,3 

1,5 

0,33 

0,275 

0,195 

0,125 

0,08 

0,033 

0,015 

0 

600 

1040 

1360 

1540 

- 

- 

40 

25 

14 

6 

1,5 

- 

- 

0,33 

0,265 

0,13 

0,065 

0,015 

- 

- 

0 

590 

1011 

1200 

1320 

- 

- 

40 

25,3 

14/7 

10 

7 

3,3 

1,5 

0,33 

0,27 

0,165 

0,11 

0,075 

0,033 

0,015 

 

Then account non zero initial conditions we get 

𝑢𝑁𝑇(𝑡) = 𝑢𝑁𝑇(0) −
1

𝐶
𝑚𝑆 =

5 ∙ 10−3 ∙ 5 ∙ 10−4

(100 ∙ 10−6)
𝑆 = 25 ∙ 10−3𝑆, V, 

where 𝑚 – scale along access current and time. 

During second approximation of the voltage (curve 2, fig. 5.10, d) 

we found second approximation of the of the current (curve 2, fig. 5.10, 

a), and then the three approximation of the voltage (curve 3, fig. 5.10, d) 

and three approximation of the of the current (curve 3,fig. 5.10, a). 

Results calculation are given in table 5.5. 

                  

Problem 5.6. 

Series connection of inductance 𝐿 = 0.08 H and nonlinear 

resistance two-port, characteristic of which is given in table 5.3, are 

connected join in constant voltage 𝑈 = 40 V. Define current in the 

circuit. It’s necessary the problem by method of successive sections. 

         

Solution. 

Let’s we substitute in differential equation of the circuit (fig. 5.11, 

a) 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑢 = 𝑈 

derivative by relations of finite increments and receive approximation 

equation 

Δ𝑖 ≈
𝑈 − 𝑢1
𝐿

Δ𝑡. 
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Let’s divide transient processe time on rang of small same intervals 

Δ𝑡 = 0.1mcs. Then for the any (k-th) interval we get 

𝑖𝑘+1 = 𝑖𝑘 + Δ𝑖𝑘+1 =
𝑈 − 𝑢1
𝐿

Δ𝑡 . 

Using volt-ampere characteristic of nonlinear  two-port (fig. 5.11, 

b), we perform calculate and compile tabl. 5.6.  

Table 5.6 

№ 
𝑡𝑘, 
ms 

𝑖𝑘, 

A 

𝑢1𝑘, 

V 

𝑈 − 𝑢1𝑘, 

V 

𝑈−𝑢1𝑘

𝐿
, 

V/H 

Δ𝑖𝑘+1, 

A 

𝑖𝑘+1, 

A 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0 

0.05 

0.0981 

0.1443 

0.1883 

0.2295 

0.267 

0.299 

0.326 

0.33 

0 

1.5 

3 

4.75 

7 

10 

14.5 

20 

35 

- 

40 

38.5 

37 

35.25 

33 

30 

25.5 

20 

5 

- 

500 

481 

462 

440 

412 

375 

320 

250 

62 

- 

0.05 

0.0481 

0.0462 

0.044 

0.0412 

0.0375 

0.032 

0.025 

0.0062 

- 

0.05 

0.0981 

0.1443 

0.1883 

0.2295 

0.267 

0.299 

0.324 

0.33 

- 

 

Dependance 𝑖(𝑡) is shown in fig. 5.11, c.  

 

 
a    b   c 

Fig. 5.11. 

a – circuit; b – VAC; c – graphic of dependence 𝑖(𝑡) 
 

Problem 5.7. 

Series connection of resistance 𝑟 = 10 Ohms and nonlinear 

inductive two-port are connected to source of constant voltage 𝑈 = 1 V. 

Define current of the circuit, if characteristic of nonlinear two-port is 
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wrote down by equation 𝑖 = ψ2. Solve problem by method of state 

space. 

Solution. 

Scheme of the circuit is shown in fig. 5.8 and is circuitscribed by 

equation (5. 34) 
𝑑𝜓

𝑑𝑡
= 𝑈– 𝑟𝑓2(𝜓, 𝑡).                                   (5.34) 

Solution of this equation is (5.36) 

𝛹[(𝑘 + 1)𝑇] = 𝜓(𝑘𝑇) + 𝑈𝑇– 𝑟𝑖(𝑘𝑇)𝑇,                  (5.36) 

where 𝑖(𝑘𝑇) = 𝑓2[𝜓(𝑘𝑇)]. 
Calculate meaning of dependences 𝜓(𝑡) and 𝑖(𝑡) are given in table 

5.8, in accordance of which are construct graphics of fig. 5.12. 

 
Fig. 5.12. Graphics of dependences 𝛹(𝑡) and 𝑖(𝑡) 

Table 5.8  

K t = kT, s Ψ(kT), W i(kT), A 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1,0 

0 

0,1 

0,19 

0,254 

0,289 

0,305 

0,312 

0315 

0,3158 

0,3161 

0,3162 

0 

0,01 

0,036 

0,0645 

0,0835 

0,093 

0,097 

0,0992 

0,0997 

0,0999 

0,09998 
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Methodic instruction 

 

By analyze and calculation transient processes in nonlinear circuits 

its necessary to attention on certain particularity of this circuit. 

1. Nonlinear differential equation, which describe processes in 

nonlinear circuits haven’t common solutions even for circuits 

of the first and second order. 

2. Superposition principle isn’t applicable to the nonlinear 

circuits.  

3. For nonlinear circuits standard test functions as single step 

function 1(𝑡) and delta function δ(𝑡), which completely define 

reaction of the circuit on such action, aren’t existed.  

4. Transference 𝐻(𝑝) and frequency 𝐻(𝑗ω) functions aren’t 

define property of nonlinear circuits. 

5. Electro technical devices, constructed on nonlinear elements 

are more diverse, then on linear circuits. Nonlinear circuits 

allow construct such devices, realization of which in linear 

circuits isn’t possible. 

6. Offering methods of analyses and calculations of nonlinear 

circuits can’t apply without preliminary understanding physical 

processes in the circuit.   

 

Literature: [ 4, 9, 10, 12, 14,15, 18, 20] 

 

Questions for self checking 

 

1. What is Integrate method of approximation? 

2. What is Graphic integration method? 

3. What is Method of phase plane? 

4. What is Method of successive approximations? 

5. What is Mating intervals method? 

6. What is Fined increment method (of successive sections)? 

7. What is Method of state space? 

8. What is Methods of averaging 
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6. BESIS OF TWO-PORTS THEORY 

 

6.1.Basic notions and definitions   

 

Electric circuits by the number of external terminals can be divide 

into two-port, three-port, four-port and multi-port. 

A two-port (four-terminal network) is called a part of an electric 

circuit, that has two pairs of external terminals, through which it 

connects to the rest of the circuit. In fig. 6.1 two-port 𝑁 with external 

terminals1-1’, 2-2’ connects to the other circuit. 

 

 
a 

 

 
b 

Fig. 6.1 

 

Two-ports are classified according to various features (fig. 6.2). 

Linear are called two ports, which haven’t nonlinear elements. The 

two-ports are called nonlinear, if they contain at least one nonlinear 

element. 
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Passive is called two-ports, which do not have sources of energy. 

The two-port is called active, if 

its composition includes at least 

one source of voltage or current. 

If all the energy sources that are 

part of the active two-ports are 

autonomous (uncontrolled), then 

the two-port is called 

autonomous. If at least one of 

them is non-autonomous 

(uncontrolled), then the two-port 

is called the non-autonomous. 

Two-ports, which satisfy 

the principle of reciprocity, 

called reciprocal, otherwise – 

non-reciprocal. 

Symmetric are called two-

ports, whose circuits are 

symmetrical relative to the 

vertical, conducted through the 

middle of the circuits, 

asymmetric – otherwise.      

Fig. 6.2 

Fig. 6.3 shows the schematics of the simplest two-ports. Two-port, 

shown in Fig. 6.3, a (lower pass filter) is linear, passive, mutual and 

symmetric, the two-port, shown in fig. 6.3, b (scheme of replacement of 

the transistor with a source of current) – nonlinear, active, non-

autonomous, asymmetric, and in fig. 6.3, c (circuit for replacing the 

transistor with a voltage source) – linear, active, autonomus, 

asymmetric. In fig. 6.3, d the outputs E, B, C corresponds to the emitter, 

base and collector of the transistor. 

The main purpose of the two-port is the transmission of energy 

from the source to the consumer and the transformation of parameters: 

amplification, attenuation, stabilization, frequency transformation, 

phase, voltage, power, etc. 

The main task of the two-port theory is to study its properties with 

respect to its external terminals as well as the analysis of the work of the 

two-port with the external circuits. 
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a 

 

 
b 

 

 
c 

Fig. 6.3 

 

The two-port with the outer circuit can be connected by regular and 

irregular connections. If the two-port connects two independent parts of 

the outer circuit (see Fig. 6.1, a), then it is considered passable and has a 

fair relation to it: 

𝐼1̇ = 𝐼1̇
′ ,   𝐼2̇ = 𝐼2̇

′ . 

Such a connection is called regular. If the two-port connects the 

areas of one outer circuit  (Fig. 6.1,b), then in the general case, such a 

connection is called irregular 

𝐼1̇ ≠ 𝐼1̇
′ ,   𝐼2̇ ≠ 𝐼2̇

′ . 

The methods of the theory of two-ports are only related to regular 

connections. At the input and output of the two-port there are two 

voltages and two currents. The relations between them are described by 
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a system of two equations, in which any variables from these can be 

considered as independent, and the other two as dependent. As a result, 

you can make 𝐶4
2 = 6 pairs of equations, six systems of coefficients, 

which are called two-port parameters. 

 

 

6.2. Two-ports equations 

 

Let the two-port terminals 1-1’ (Fig. 6.4) connect the source of the 

input electromotive force (EMF) with the internal impedance �̇�𝑖𝑛𝑝, and 

to the terminals 2-2’ the load 𝑍𝑙. 
Let's analyze the scheme of Fig. 6.4 by the method of loop currents. 

 
Fig. 6.4 

 

Denote loop currents at the input and output of the two-port via 𝐼İ, 
𝐼İI. We write the system of loop equations in a matrix form 

[

𝑍𝑖𝑛𝑝 + 𝑍11
′ 𝑍12

′ ⋯ 𝑍1𝑁

𝑍21 𝑍𝑙 + 𝑍22
′ ⋯ 𝑍2𝑁

⋯
𝑍𝑁1

⋯
𝑍𝑁2

⋯
⋯   

⋯
𝑍𝑁𝑁

]

[
 
 
 
𝐼İ
𝐼İI
⋯
𝐼�̇�]
 
 
 

=

[
 
 
 
�̇�𝑖𝑛 + �̇�I

′

�̇�II
⋯
�̇�𝑁 ]

 
 
 

 

where 𝑍11
′ , Z22

′  – the components of the соmplex impedance of the first 

and second loops, which are determined by the actual two- ports 𝑁 from 

the terminals 1-1’ and 2-2’ respectively; �̇�I
′ – component of the EMF of 

the first loop by the terminals 1-1’ of the two-ports. 

From Fig. 6.4 of  two-ports is clear that. 

𝐼İ = 𝐼1̇; 𝐼İI = −𝐼2̇; �̇�𝑖𝑛 = 𝐼1̇𝑍𝑖𝑛𝑝 + �̇�1; �̇�2 = −𝐼2̇𝑍𝑙.     (6.1) 

Components 

𝐼İ𝑍𝑖𝑛𝑝 = 𝐼1̇𝑍𝑖𝑛𝑝 = �̇�𝑖𝑛 − �̇�1 

in the right side of the first equation (6.1) and 

𝐼İI𝑍𝑙 = −𝐼2̇𝑍𝑙 = −�̇�2. 
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�̇�𝑖𝑛 in the left part of the second equation (6.1) we move to the 

right part. Then, taking into account the expression (6.1) 

[

𝑍𝑖𝑛𝑝 𝑍12
′ ⋯ 𝑍1𝑁

𝑍21 𝑍22
′ ⋯ 𝑍2𝑁

⋯
𝑍𝑁1

⋯
𝑍𝑁2

⋯
⋯   

⋯
𝑍𝑁𝑁

]

[
 
 
 
𝐼1̇
𝐼2̇
⋯
𝐼�̇�]
 
 
 

=

[
 
 
 
�̇�I
′ + �̇�1

�̇�II − �̇�2
⋯
�̇�𝑁 ]

 
 
 

  (6.2) 

The loop impedance matrix (6.2) is composed only of the 

impedance of the actual two-port without taking into account the outer 

circuit. 

We have from system (6.2) 

{
𝐼1̇ =

∆1
∆
= (�̇�I

′ + �̇�1)
∆11
∆
+ (�̇�II − �̇�2)

∆21
∆
+⋯+ �̇�𝑁

∆𝑁1
∆

; 

−𝐼2̇ =
∆2
∆
= (�̇�I

′ + �̇�1)
∆12
∆
+ (�̇�II − �̇�2)

∆22
∆
+⋯+ �̇�𝑁

∆𝑁2
∆
.

(6.3) 

where ∆, ∆1, ∆2, ∆11, …, ∆𝑁1, ∆12, ..., ∆𝑁2 – determinants and algebraic 

adjunct of the matrix of loop impedances in the system (6.2) 

From formulas (6.3) it is clear that the currents at the input and 

output of the two port are determined by the EMF and the smpedances 

of not only their own but also the remaining loops of the two-ports. Let's 

denote 

{
𝐼1̇0 = �̇�I

′
∆11
∆
+ �̇�II

∆21
∆
+⋯+ �̇�𝑁

∆𝑁1
∆

;

𝐼2̇0 = �̇�I
′
∆12
∆
+ �̇�II

∆22
∆
+⋯+ �̇�𝑁

∆𝑁2
∆
.

 

The currents 𝐼1̇0 and 𝐼2̇0 are determined by independent sources of 

EMF �̇�I
′, �̇�II, …, �̇�𝑁 within the of two-port, that is, the system (6.3) can 

be rewritten as 

[
𝐼1̇
𝐼2̇
] = [

𝑌11 𝑌12
𝑌21 𝑌22

] [
�̇�1
�̇�2
] + [

𝐼1̇0
𝐼2̇0
],    (6.4) 

where 

𝑌11 =
∆11
∆

; 𝑌12 = −
∆21
∆

; 𝑌21 = −
∆12
∆

; 𝑌22 =
∆22
∆

.           (6.5) 

The coefficients 𝑌11, 𝑌12, 𝑌21, 𝑌22 are determined only by passive 

elements of the two-port circuit and are called the parameters of the 

two-port. 

Equation (6.4) is the equation of arbitrary two-port. 
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6.3. Parameters of the two-port 

 

Y- parameters. For a passive two-port 

𝐼1̇0 = 𝐼2̇0 = 0. 
Then we find from the system (6.4) 

[
𝐼1̇
𝐼2̇
] = [

𝑌11 𝑌12
𝑌21 𝑌22

] [
�̇�1
�̇�2
]    (6.6) 

or 

[𝐼]̇ = [𝑌][�̇�],     (6.7) 

where 

[𝑌] = [
𝑌11 𝑌12
𝑌21 𝑌22

] = [

∆11
∆

−
∆21
∆

−
∆12
∆

∆22
∆

] =
1

∆
[
∆11 −∆21
−∆12 ∆22

] .       (6.8) 

Elements 𝑌11, 𝑌12, 𝑌21, 𝑌22 are conducts and are called Y- 

parameters of two-port. The matrix (6.8) is a matrix of Y-parameters. 

The system (6.6) can be rewritten in the usual form: 

{
𝐼1̇ = 𝑌11�̇�1 + 𝑌12�̇�2;

𝐼2̇ = 𝑌21�̇�1 + 𝑌22�̇�2.
     (6.9) 

From here it is clear that 

𝑌11 =
𝐼1̇

�̇�1
|
�̇�2=0

; 𝑌12 =
𝐼1̇

�̇�2
|
�̇�1=0

; 𝑌21 =
𝐼2̇

�̇�1
|
�̇�2=0

; 𝑌22 =
𝐼2̇

�̇�2
|
�̇�1=0

.(6.10) 

that is, the Y-parameters can be determined experimentally by 

performing a short circuit test at the input (�̇�1 = 0) at the calculation 𝑌12 

and 𝑌22 at the output (�̇�2 = 0) when calculating 𝑌11, 𝑌21. 

Therefore Y-parameters are called short circuit parameters. 

For reciprocal two-ports 𝑌12 = 𝑌21, ie  ∆12= ∆21. For simetrical 

two-ports ∆11= ∆22.  

 

Example 6.1. 

Determine the Y - parameters of the two-port (Fig. 6.5). 

1. Calculation method. Let's construct a matrix of the loop 

impedance for the first (I) and second (II) loops is shown in Fig. 6.5. 

𝑍 = [
𝑍1 + 𝑍2 −𝑍2
−𝑍2 𝑍2 + 𝑍3

].    (6.11) 

From here 
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∆= (𝑍1 + 𝑍2)(𝑍2 + 𝑍3) − 𝑍2
2 = 𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3; (6.12) 

∆11= 𝑍2 + 𝑍3; ∆12= 𝑍2; ∆21= 𝑍2; ∆22= 𝑍1 + 𝑍2.  (6.13) 

 

 
Fig.6.5 

 

Now we obtain from formulas (6.5) taking into account (6.12), 

(6.13): 

𝑌11 =
∆11
∆
=

𝑍2 + 𝑍3
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

;                    (6.14) 

𝑌12 =
∆21
∆
= −

𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

;                  (6.15) 

𝑌21 =
∆12
∆
= −

𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

;                  (6.16) 

𝑌22 =
∆22
∆
=

𝑍1 + 𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

.                    (6.17) 

2. Experimental method. Execute in the scheme of Fig. 6.5 short-

circuit test on output terminals 2-2’ (�̇�2 = 0): 

𝐼1̇ =
�̇�1

𝑍1 +
𝑍2𝑍3
𝑍2+𝑍3

; 𝐼2̇ = −
𝐼1̇𝑍2
𝑍2+𝑍3

. 

Then 

𝑌11 =
𝐼1̇

�̇�1
|
�̇�2=0

=
�̇�1

𝑍1 +
𝑍2𝑍3
𝑍2+𝑍3

1

�̇�1
=

𝑍2 + 𝑍3
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

; 

𝑌21 =
𝐼2̇

�̇�1
|
�̇�2=0

= −
�̇�1

𝑍1 +
𝑍2𝑍3
𝑍2+𝑍3

𝑍2
𝑍2+𝑍3

1

�̇�1
= −

𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

. 

We execute in the scheme of Fig. 6.5 a short-circuit test on the 

input terminals 1-1’ (�̇�1 = 0): 
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𝐼1̇ = −
𝐼2̇𝑍2
𝑍1+𝑍2

; 𝐼2̇ =
�̇�2

𝑍3 +
𝑍1𝑍2
𝑍1+𝑍2

. 

Then 

𝑌22 =
𝐼2̇

�̇�2
|
�̇�1=0

=
�̇�2

𝑍3 +
𝑍1𝑍2
𝑍1+𝑍2

1

�̇�2
=

𝑍1 + 𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

; 

𝑌12 =
𝐼1̇

�̇�2
|
�̇�1=0

= −
�̇�2

𝑍3 +
𝑍1𝑍2
𝑍1+𝑍2

𝑍2
𝑍1+𝑍2

1

�̇�2
= −

𝑍2
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

. 

Z-parameters. From expression (6.7) 

[�̇�] = [𝑌]−1[𝐼]̇ 
or 

[
�̇�1
�̇�2
] = [

𝑌11 𝑌12
𝑌21 𝑌22

]
−1

[
𝐼1̇
𝐼2̇
].   (6.18) 

The inverse matrix has the form 

[𝑌]−1 = [
𝑌11 𝑌12
𝑌21 𝑌22

]
−1

=
1

[𝑌]
[
𝑌11 −𝑌12
−𝑌21 𝑌22

] = [
𝑍11 𝑍12
𝑍21 𝑍22

] = [𝑍], (6.19) 

where [𝑌] – the determinant of the matrix Y-parameters from the 

formula (6.8) 
[𝑌] = 𝑌11𝑌22 − 𝑌12𝑌21.    (6.20) 

The elements 𝑍11, 𝑍12, 𝑍21, 𝑍22 are impedances and are called Z-

parameters of the two-port. The matrix (6.19) is a matrix of Z-

parameters. Taking into account the relation (6.5) we obtain 

[𝑍] = [
𝑍11 𝑍12
𝑍21 𝑍22

] =
∆

∆11∆22 − ∆12∆21
[
∆22 ∆21
∆12 ∆11

] = 

(6.21) 

=
1

∆11,22
[
∆22 ∆21
∆12 ∆11

] 

The ratio is used here 

∆11∆22 − ∆12∆21= ∆11,22, 

where ∆11,22 – is the double algebraic adjunct, obtained from the 

determinant ∆ by the striking out of the first and the other two rows and 

columns. 

From expression (6.21) 
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𝑍11 =
∆22

∆11∆22 − ∆12∆21
;  𝑍12 =

∆21
∆11∆22 − ∆12∆21

; 

𝑍21 =
∆12

∆11∆22 − ∆12∆21
;  𝑍22 =

∆11
∆11∆22 − ∆12∆21

. 

Thus, according to formulas (6.18) and (6.19), we obtain 

[
�̇�1
�̇�2
] = [

𝑍11 𝑍12
𝑍21 𝑍22

] [
𝐼1̇
𝐼2̇
]    (6.22) 

The system (6.22) can be rewritten in the usual form: 

{
�̇�1 = 𝑍11𝐼1̇ + 𝑍12𝐼2̇;

�̇�2 = 𝑍21𝐼1̇ + 𝑍22𝐼2̇.
    (6.23) 

From here it is clear that 

𝑍11 =
�̇�1

𝐼1̇
|
𝐼2̇=0

; 𝑍12 =
�̇�1

𝐼2̇
|
𝐼1̇=0

; 𝑍21 =
�̇�2

𝐼1̇
|
𝐼2̇=0

; 𝑍22 =
�̇�2

𝐼2̇
|
𝐼1̇=0

, (6.24) 

ie Z-parameters can be determined experimentally, performing the 

experiment of without load at the input (𝐼1̇ = 0) at the calculation 𝑍12 

and 𝑍22 at the output (𝐼2̇ = 0) at the calculation 𝑍11, 𝑍21. Therefore – Z-

parameters are also called without load parameters. 

We have from matrixes (6.19) and (6.21) 

𝑍11 =
∆22
∆11,22

=
𝑌22

𝑌11𝑌22 − 𝑌12𝑌21
; 𝑍12 =

∆21
∆11,22

= −
𝑌12

𝑌11𝑌22 − 𝑌12𝑌21
;  

𝑍21 =
∆12
∆11,22

= −
𝑌21

𝑌11𝑌22 − 𝑌12𝑌21
; 𝑍22 =

∆11
∆11,22

=
𝑌11

𝑌11𝑌22 − 𝑌12𝑌21
.  

For mutual two-ports 𝑍12 = 𝑍21, ie ∆12= ∆21. For symmetrical 

two-ports, besides this ∆11= ∆22. 

Y- and Z-parameters are dual. They are also called immittance 

parameters. 

 

Example 6.2. 

Determine the Z-parameters of the two-port (Fig. 6.5). 

1. Calculation method. Matrix of the loop impedances is shown in 

(6.11). Definition of the matrix [𝑌] according to the expressions (6.14) - 

(6.17) and (6.20) has the form 

[𝑌] = 𝑌11𝑌22 − 𝑌12𝑌21 =
𝑍2+𝑍3
𝑍2

𝑍1+𝑍2
𝑍2

−
𝑍2
𝑍2
𝑍2
𝑍2
= 
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=
(𝑍2+𝑍3)(𝑍1+𝑍2) − 𝑍2

2

𝑍4
=
𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3

𝑍4
= 

=
1

𝑍2
=

1

𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3
,                         (6.25) 

𝑍2 = 𝑍1𝑍2 + 𝑍1𝑍3 + 𝑍2𝑍3. 
Using the expressions (6.14) - (6.17) and (6.25), we obtain: 

𝑍11 =
𝑌22
[𝑌]

=
𝑍1+𝑍2
𝑍2

𝑍2 = 𝑍1+𝑍2;   𝑍12 = −
𝑌12
[𝑌]

=
𝑍2
𝑍2
𝑍2 = 𝑍2; 

𝑍21 = −
𝑌21
[𝑌]

=
𝑍2
𝑍2
𝑍2 = 𝑍2;   𝑍22 =

𝑌11
[𝑌]

=
𝑍2+𝑍3
𝑍2

𝑍2 = 𝑍2+𝑍3. 

2. Experimental method. Execute the without load on the output 

terminals 2-2’ (𝐼2̇ = 0) in the diagram shown in Fig.6.5. By that 

𝐼1̇ =
�̇�1

𝑍1+𝑍2
;  �̇�2 = 𝐼1̇𝑍2. 

Than 

𝑍11 =
�̇�1

𝐼1̇
|
𝐼2̇=0

=
�̇�1

�̇�1
𝑍1+𝑍2

= 𝑍1+𝑍2; 

𝑍21 =
�̇�2

𝐼1̇
|
𝐼2̇=0

=
𝐼1̇𝑍2

𝐼1̇
= 𝑍2. 

Perform in the circuit in Fig. 6.5 without load at the input 1-1’ 

(𝐼1̇ = 0). With 

𝐼2̇ =
�̇�2

𝑍2+𝑍3
;  �̇�1 = 𝐼2̇𝑍2. 

𝑍12 =
�̇�1

𝐼2̇
|
𝐼1̇=0

=
𝐼2̇𝑍2

𝐼2̇
= 𝑍2;   𝑍22 =

�̇�2

𝐼2̇
|
𝐼1̇=0

=
�̇�2

�̇�2
𝑍2+𝑍3

=𝑍2+𝑍3.  

A-parameters. In equations (6.6) for – the Y-parameters of 

independent variables are the voltages �̇�1 and �̇�2 at the input and output 

of the two-port. In equations (6.22) for Z - parameters independent 

variables are the currents 𝐼1̇ and 𝐼2̇ at the input and output of the two-

port. We select independent alternating current 𝐼2̇ and voltage �̇�2 at the 

output of the two-port. We obtain the voltage �̇�1 and current 𝐼1̇ at the 

input of the two-port from the expression (6.6): 
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{
 
 

 
 �̇�1 = −

𝑌22
𝑌21

�̇�2 +
1

𝑌21
𝐼2̇ = 𝐴11�̇�2 − 𝐴12𝐼2̇;

𝐼1̇ = −
[𝑌]

𝑌21
�̇�2 +

𝑌11
𝑌21

𝐼2̇ = 𝐴21�̇�2 − 𝐴22𝐼2̇.

        (6.26) 

where 

𝐴11 = −
𝑌22
𝑌21

;  𝐴12 = −
1

𝑌21
;  𝐴21 = −

[𝑌]

𝑌21
;  𝐴22 = −

𝑌11
𝑌21
. 

The elements 𝐴11, 𝐴12, 𝐴21, 𝐴22 are complex transmitting 

functions of the two-port from output to input and called A-parameters 

of the two-port. 

The expression (6.26) can be rewritten in the matrix form: 

[
�̇�1
𝐼1̇
] = [

𝐴11 𝐴12
𝐴21 𝐴22

] [
�̇�2
−𝐼2̇

] 

From expression (6.26) it is clear that 

𝐴11 =
�̇�1

�̇�2
|
𝐼2̇=0

;   𝐴12 = −
�̇�1

𝐼2̇
|
�̇�2=0

; 

(6.27) 

𝐴21 =
𝐼1̇

�̇�2
|
𝐼2̇=0

;   𝐴22 = −
𝐼1̇

𝐼2̇
|
�̇�2=0

. 

That is, A-parameters can be determined experimentally by 

performing without load at the output (𝐼2̇ = 0) when calculating 𝐴11, 

𝐴21 and testing a short circuit at the output (�̇�2 = 0) when calculating 

𝐴12, 𝐴22. 

By the physical nature the parameter 𝐴11 is a complex transmission 

coefficient of voltage at no-load on the output, the parameter 𝐴12 is the 

complex transmission impedance at the short circuit at the output, the 

parameter 𝐴21 – the complex transmittance at no load at the output, the 

parameter 𝐴22 is the complex transmission coefficient of the current in 

the short circuit at the output. 

For mutual two-port (𝑌12 = 𝑌21) there are ratio 

[𝐴] = 𝐴11𝐴22 − 𝐴12𝐴21 =
𝑌11𝑌22

𝑌21
2 −

[𝑌]

𝑌21
2 =

𝑌12
𝑌21

= 1. 

B-parameters. We choose the independent variables in expression 

(6.6) the current 𝐼1̇ and voltage �̇�1 at the input of the two-port. We 
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obtain the voltage �̇�2 and current 𝐼2̇ at the output of the two-port in the 

expression (6.6): 

{
 
 

 
 �̇�2 = −

𝑌11
𝑌12

�̇�1 +
1

𝑌12
𝐼1̇ = 𝐵11�̇�1 − 𝐵12𝐼1̇;

𝐼2̇ = −
[𝑌]

𝑌12
�̇�1 +

𝑌22
𝑌12

𝐼1̇ = 𝐵21�̇�1 −𝐵22𝐼1̇.

           (6.28) 

where 

𝐵11 = −
𝑌11
𝑌12

;  𝐵12 = −
1

𝑌12
;  𝐵21 = −

[𝑌]

𝑌12
;  𝐵22 = −

𝑌22
𝑌12

.    (6.29) 

Elements 𝐵11, 𝐵12, 𝐵21, 𝐵22 are complex transfer functions from 

the output to the input and called В - parameters of the two-port. 

Expressions (6.29) can be rewritten in a matrix form: 

[
�̇�2
𝐼2̇
] = [

𝐵11 𝐵12
𝐵21 𝐵22

] [
�̇�1
−𝐼1̇

]. 

From expression (6.28) it is clear that 

𝐵11 =
�̇�2

�̇�1
|
𝐼1̇=0

;   𝐵12 = −
�̇�2

𝐼1̇
|
�̇�1=0

; 

𝐵21 =
𝐼2̇

�̇�1
|
𝐼1̇=0

;   𝐵22 = −
𝐼2̇

𝐼1̇
|
�̇�1=0

. 

That is, В - parameters can be determined experimentally by 

performing an without load at the input (𝐼1̇ = 0) when calculating 𝐵11, 

𝐵21 and testing a short circuit at the input (�̇�1 = 0) when calculating 

𝐵12, 𝐵22.   

By physical nature, the parameter 𝐵11 is a complex transmission 

coefficient of voltage an without load at the input, the parameter 𝐵12 is 

the complex transmission impedance at the short circuit at the input, the 

parameter 𝐵21 is the complex transmittance an without load at the input, 

the parameter 𝐵22 is the complex transmission coefficient of the current 

at short circuiting at the input. 

For mutual two-port (𝑌12 = 𝑌21) there is a ratio 

[𝐵] = 𝐵11𝐵22 − 𝐵12𝐵21 =
𝑌11𝑌22

𝑌12
2 −

[𝑌]

𝑌21
2 =

𝑌12
𝑌21

= 1. 

With 𝐴11 = 𝐵22, 𝐴12 = 𝐵12, 𝐴21 = 𝐵21, 𝐴22 = 𝐵11. A- and B-

parameters are called transmission parameters. 



138 

H-parameters. We select the independent variables in formula 

(6.12): the current 𝐼1̇ at the input and the voltage �̇�2 at the output. We 

hold the voltage �̇�1 at the input and the current 𝐼2̇ at the output of two-

port in its expression (6.6): 

{
 
 

 
 �̇�1 = −

1

𝑌11
𝐼1̇ −

𝑌12
𝑌11

�̇�2 = 𝐻11𝐼1̇ +𝐻12�̇�2;

𝐼2̇ = −
𝑌21
𝑌11

�̇�1 +
[𝑌]

𝑌11
�̇�2 = 𝐻21𝐼1̇ +𝐻22�̇�2.

        (6.30) 

where 

𝐻11 =
1

𝑌11
;  𝐻12 = −

𝑌12
𝑌11

;  𝐻21 =
𝑌21
𝑌11

;  𝐻22 =
[𝑌]

𝑌11
.     

Elements 𝐻11, 𝐻12, 𝐻21, 𝐻22 are complex input, output and transfer 

functions of the two-port and are called H-parameters of the two-port. 

Expression (6.30) can be rewritten in a matrix form 

[
�̇�1
𝐼2̇
] = [

𝐻11 𝐻12
𝐻21 𝐻22

] [
𝐼1̇
�̇�2
]. 

From еxpression (6.30) it is clear that 

𝐻11 =
�̇�1

𝐼1̇
|
�̇�2=0

;   𝐻12 =
�̇�1

�̇�2
|
𝐼1̇=0

;   𝐻21 =
𝐼2̇

𝐼1̇
|
�̇�2=0

;   𝐻22 =
𝐼2̇

�̇�2
|
𝐼1̇=0

. 

That is, H-parameters can be determined experimentally by 

performing the without load at the input (𝐼1̇ = 0) when calculating 𝐻12, 

𝐻22 and testing a short circuit at the output (�̇�2 = 0) when calculating 

𝐻11, 𝐻21. 

By physical nature, the parameter 𝐻11 is a complex input 

impedance at short circuit at the output, the parameter 𝐻12 is a complex 

transmission coefficient of voltage without load at the input, the 

parameter 𝐻21 is the complex transmission coefficient of the current in 

the short circuit at the output, the parameter 𝐻22 is the complex output 

admittance at the without load at the input. 

For mutual two-port (𝑌12 = 𝑌21) there is a ratio 𝐻12 = −𝐻21; H-

parameters are widely for analyses transistors and transistor circuits.  
 

Example 6.3. 

In Fig. 6.3,b shows the scheme of replacement of the transistor 

through its physical parameters α, 𝑟𝑒 = 𝑟1, 𝑟𝑏 = 𝑟2, 𝑟𝑘 = 𝑟3. Find its H-

parameters. 
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We write the system of loop equations for the circuit fig.6.3, b. Pre-

convert the current source 𝐼̇ = α𝐼1̇ to the voltage source �̇� = 𝐼�̇�𝑘 =
𝛼𝐼1̇𝑟𝑘: 

{
𝐼1̇𝑟𝑒 + (𝐼1̇ + 𝐼2̇)𝑟𝑏 − �̇�1 = 0;           

−𝐼2̇𝑟𝑘 − (𝐼1̇ + 𝐼2̇)𝑟𝑏 − �̇� + �̇�2 = 0,
   (6.31) 

or 

{
(𝑟𝑒 + 𝑟𝑏)𝐼1̇ + 𝑟𝑏𝐼2̇ = �̇�1;                

(𝑟𝑏 + α𝑟𝑘)𝐼1̇ + (𝑟𝑏 + 𝑟𝑘)𝐼2̇ = �̇�2.
 

Usually in the transistor 𝑟𝑏 ≪ 𝑟𝑘. Then 

{
(𝑟𝑒 + 𝑟𝑏)𝐼1̇ + 𝑟𝑏𝐼2̇ = �̇�1;

α𝑟𝑘𝐼1̇ + 𝑟𝑘𝐼2̇ = �̇�2.          
    (6.32) 

Define 𝐼2̇ from the second equation (6.32): 

𝐼2̇ =
1

𝑟𝑘
�̇�2 − α𝐼1̇.                                         (6.33) 

We substitute (6.33) in the first equation (6.32). Get the system 

{
 

 �̇�1 = [𝑟𝑒 + (1 − α)𝑟𝑏]𝐼1̇+
𝑟𝑏
𝑟𝑘
�̇�2;

𝐼2̇ = −α𝐼1̇ +
1

𝑟𝑘
�̇�2.                        

                       (6.34) 

Comparing equations (6.34) and (6.30), we obtain 

𝐻11 = 𝑟𝑒 + (1 − 𝛼)𝑟𝑏; 𝐻12 =
𝑟𝑏
𝑟𝑘

; 𝐻21 = −𝛼; 𝐻22 =
1

𝑟𝑘
. 

 

G-parameters. We choose the independent variables in the 

expression (6.6) of the input voltage �̇�1 and the output current 𝐼2̇. Find 

the current 𝐼1̇ at the input and the voltage �̇�2 at the output of the two 

port: 

{
 
 

 
 𝐼1̇ = −

[𝑌]

𝑌22
�̇�1 +

𝑌12
𝑌22

𝐼2̇ = 𝐺11�̇�1 − 𝐺12𝐼2̇;

�̇�2 = −
𝑌21
𝑌22

�̇�1 −
1

𝑌22
𝐼2̇ = 𝐺21�̇�1 − 𝐺22𝐼2̇,

                (6.35) 

where 

𝐺11 =
[𝑌]

𝑌22
;  𝐺12 =

𝑌12
𝑌22

;  𝐺21 = −
𝑌21
𝑌22

;  𝐺22 =
1

𝑌22
.     
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Elements 𝐺11, 𝐺12, 𝐺21, 𝐺22 are complex input, output and 

transmitting functions of the two-port and are called the parameters of 

the two-port. 

The expression (6.35) can be rewritten in a matrix form 

[
𝐼1̇
�̇�2
] = [

𝐺11 𝐺12
𝐺21 𝐺22

] [
�̇�1
𝐼2̇
]. 

From expression (6.35) it is clear that 

𝐺11 =
𝐼1̇

�̇�1
|
𝐼2̇=0

;   𝐺12 =
𝐼1̇

𝐼2̇
|
�̇�1=0

;   𝐺21 =
�̇�2

�̇�1
|
𝐼2̇=0

;   𝐺22 =
�̇�2

𝐼2̇
|
�̇�1=0

. 

That is, G - parameters can be determined experimentally, by 

performing a short circuit test at the input (�̇�1 = 0) when calculating 

𝐺12 and 𝐺22 and without load at the output (𝐼2̇ = 0) when calculating 

𝐺11 and 𝐺21. 

By physical nature, the parameter 𝐺11 is the complex input 

conductivity at without load at the output a, the parameter 𝐺12 is the 

complex transmission coefficient of current at the short circuit at the 

input, the parameter 𝐺21 is the complex transmission coefficient of the 

voltage at without load at the output, the parameter 𝐺22 is the complex 

input impedance at the short circuit at the output. 

For mutual two ports (𝑌12 = 𝑌21) there is a ratio 𝐺12 = −𝐺21;  

 H- and G-parameters are called hybrid parameters; H- and G - 

parameters of the two-port are dual. 

All two-ports parameters are expressed in terms of Y-parameters. In 

the same way, any system of parameters can be expressed through 

another system. 

 

Example 6.4.  
Select H-parameters through A-parameters. 

The system of two-ports equations in A-parameters using from 

(6.26): 

{
�̇�1 = 𝐴11�̇�2 − 𝐴12𝐼2̇;

𝐼1̇ = 𝐴21�̇�2 − 𝐴22𝐼2̇.
         

The system of two-port equations in H-parameters of expression 

using from (6.30) 

{
�̇�1 = 𝐻11𝐼1̇ +𝐻12�̇�2;

𝐼2̇ = 𝐻21𝐼1̇ +𝐻22�̇�2.
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From the second equation (6.26) we get 

𝐼2̇ = −
1

𝐴22
𝐼1̇ +

𝐴21
𝐴22

�̇�2.                                 (6.36) 

We substitute (6.36) in the first equation (6.26), then 

�̇�1 = 𝐴11�̇�2 − 𝐴12 (−
1

𝐴22
𝐼1̇ +

𝐴21
𝐴22

�̇�2) = 

(6.37) 

=
𝐴12
𝐴22

𝐼1̇ + (𝐴11 −
𝐴12𝐴21
𝐴22

) �̇�2 =
𝐴12
𝐴22

𝐼1̇ +
[𝐴]

𝐴22
�̇�2, 

where 

[𝐴] = 𝐴11𝐴22 − 𝐴12𝐴21. 
That is, the expressions (6.36) and (6.37) can be written as a system 

of equations 

{
 
 

 
 �̇�1 =

𝐴12
𝐴22

𝐼1̇ +
[𝐴]

𝐴22
�̇�2;

𝐼2̇ = −
1

𝐴22
𝐼1̇ +

𝐴21
𝐴22

�̇�2.

                                 (6.38) 

Comparing the systems (6.38) and (6.30), we obtain 

𝐻11 =
𝐴12
𝐴22

; 𝐻12 =
[𝐴]

𝐴22
; 𝐻21 = −

1

𝐴22
; 𝐻22 =

𝐴21
𝐴22

. 

Table 6.1 shows the correlation of parameters for mutual 

symmetricе two-ports, and tables 6.2 and 6.3 - the formulas for the 

conversion of some parameters of two-ports through other. 

Table 6.1 
Two-ports Y Z A B H G 

Reciprocal 𝑌12 = 𝑌21 𝑍12 = 𝑍21 [𝐴] = 1 [𝐵] = 1 𝐻12 = −𝐻21 𝐺12 = −𝐺21 

Symmetric 𝑌11 = 𝑌22 𝑍11 = 𝑍22 𝐴11 = 𝐴22 𝐵11 = 𝐵22 [𝐻] = 1 [𝐺] = 1 

 

Table 6.2 

 Y Z A 

Y 
𝑌11 𝑌12
𝑌21 𝑌22

 

𝑍22
[𝑍]

−
𝑍12
[𝑍]

−
𝑍21
[𝑍]

𝑍11
[𝑍]

 

𝐴22
𝐴12

−
[𝐴]

𝐴12

−
1

𝐴12

𝐴11
𝐴12
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Z 

𝑌22
[𝑌]

−
𝑌12
[𝑌]

−
𝑌21
[𝑌]

𝑌11
[𝑌]

 
𝑍11 𝑍12
𝑍21 𝑍22

 

𝐴11
𝐴21

[𝐴]

𝐴21
1

𝐴21

𝐴22
𝐴21

 

A 

−
𝑌22
𝑌21

−
1

𝑌21

−
[𝑌]

𝑌21
−
𝑌11
𝑌21

 

𝑍11
𝑍21

[𝑍]

𝑍21
1

𝑍21

𝑍22
𝑍21

 
𝐴11 𝐴12
𝐴21 𝐴22

 

B 

−
𝑌11
𝑌12

−
1

𝑌12

−
[𝑌]

𝑌12
−
𝑌22
𝑌12

 

𝑍22
𝑍12

[𝑍]

𝑍12
1

𝑍12

𝑍11
𝑍12

 

𝐴22
[𝐴]

𝐴12
[𝐴]

𝐴21
[𝐴]

𝐴11
[𝐴]

 

H 

1

𝑌11
−
𝑌12
𝑌11

𝑌21
𝑌11

−
[𝑌]

𝑌11

 

[𝑍]

𝑍22

𝑍12
𝑍22

−
𝑍21
𝑍22

1

𝑍22

 

𝐴12
𝐴22

[𝐴]

𝐴22

−
1

𝐴22

𝐴21
𝐴22

 

G 

[𝑌]

𝑌22

𝑌12
𝑌22

−
𝑌21
𝑌22

1

𝑌22

 

1

𝑍11
−
𝑍12
𝑍11

𝑍21
𝑍11

−
[𝑍]

𝑍11

 

𝐴21
𝐴11

−
[𝐴]

𝐴11
1

𝐴11

𝐴12
𝐴11

 

 B H G 

Y 

𝐵11
𝐵12

−
1

𝐵12

−
[𝐵]

𝐵12
−
𝐵22
𝐵12

 

1

𝐻11
−
𝐻12
𝐻11

𝐻21
𝐻11

[𝐻]

𝐻11

 

[𝐺]

𝐺22

𝐺12
𝐺22

−
𝐺21
𝐺22

1

𝐺22

 

Z 

𝐵22
𝐵21

1

𝐵21
[𝐵]

𝐵21

𝐵11
𝐵21

 

[𝐻]

𝐻22

𝐻12
𝐻22

−
𝐻21
𝐻22

1

𝐻22

 

1

𝐺11
−
𝐺12
𝐺11

𝐺21
𝐺11

[𝐺]

𝐺11

 



143 

A 

𝐵22
[𝐵]

𝐵12
[𝐵]

𝐵21
[𝐵]

𝐵11
[𝐵]

 

−
[𝐻]

𝐻21
−
𝐻11
𝐻21

−
𝐻22
𝐻21

−
1

𝐻21

 

1

𝐺21

𝐺22
𝐺21

𝐺11
𝐺21

[𝐺]

𝐺21

 

B 
𝐵11 𝐵12
𝐵21 𝐵22

 

1

𝐻12

𝐻11
𝐻12

𝐻22
𝐻12

[𝐻]

𝐻12

 

−
[𝐺]

𝐺12
−
𝐺22
𝐺12

−
𝐺11
𝐺12

−
1

𝐺12

 

H 

𝐵12
𝐵11

1

𝐵11
[𝐵]

𝐵11

𝐵21
𝐵11

 
𝐻11 𝐻12
𝐻21 𝐻22

 

𝐺22
[𝐺]

−
𝐺12
[𝐺]

−
𝐺21
[𝐺]

𝐺11
[𝐺]

 

G 

𝐵21
𝐵22

−
1

𝐵22
[𝐵]

𝐵22

𝐵12
𝐵22

 

𝐻22
[𝐻]

−
𝐻12
[𝐻]

−
𝐻21
[𝐻]

𝐻11
[𝐻]

 
𝐺11 𝐺12
𝐺21 𝐺22

 

 

One-side dparameters. For two-ports, which have large geometric 

sizes, for example, the communication lines, measuring voltages and 

currents at the input and output of the two-ports is not convenient in the 

experimental determination of its parameters. In this case,  

One-sideds  parameters are used, which represent a combination of 

immittance parameters Y and Z: 

𝑍1𝑥 =
1

𝑌1𝑥
=
�̇�1

𝐼1̇
|
𝐼2̇=0

= 𝑍11;                                   (6.39) 

𝑍2𝑥 =
1

𝑌2𝑥
=
�̇�2

𝐼2̇
|
𝐼1̇=0

= 𝑍22;                                   (6.40) 

𝑍1𝑘 =
1

𝑌1𝑘
=
�̇�1

𝐼1̇
|
�̇�2=0

=
1

𝑌11
;                                   (6.41) 

𝑍2𝑘 =
1

𝑌2𝑘
=
�̇�2

𝐼2̇
|
�̇�1=0

=
1

𝑌22
.                                  (6.42) 

For symmetrical two-ports (𝑍11 = 𝑍22, 𝑌11 = 𝑌22) 

𝑍1𝑥 = 𝑍2𝑥 = 𝑍𝑥; 𝑍1𝑘 = 𝑍2𝑘 = 𝑍𝑘. 
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Of the four parameters according to the relations (6.39) - (6.42), 

only three are independent, since there is a correlation 
𝑍1𝑥
𝑍1𝑘

=
𝑍2𝑥
𝑍2𝑘

. 

In expressions (6.39) - (6.42) there aren't transfer functions. 

Therefore one-sided parameters are obtained only for two-ports 

description of reciprocal circuits. 

Y-, Z-, A-, B-, H-, G-parameters and one-sided parameters are given 

for two-ports don’t account influence of external circuit. Therefore, they 

are called primary parameters. 

 

 

6.4.Equivalent circuits for replacing two-ports 

 

With systems of two-ports equations in Y-, Z-, A-, B-, H-, G-

parameters it is possible to construct equivalent circuits for replacing 

two-ports. So the system of equations (6.9) in Y-parameters can be put 

in correspondence with the equivalent scheme (fig. 6.6). 

 

 
Fig. 6.6 

 

Here, the sources of the current 𝑌12�̇�2 corresponds to the second 

component in the right side (6.9). The first component are provided with 

conductors 𝑌11, 𝑌22 and voltages �̇�1, �̇�2. 

The scheme of Fig. 6.7 also satisfies the system (6.9). 

 

 
Fig.6.7 
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Really with a short circuit at the input (�̇�1 = 0) 

𝐼1̇ = −�̇�2 ∙ (−𝑌12) = 𝑌12�̇�2;   𝑌12 =
𝐼1̇

�̇�2
|
�̇�1=0

; 

𝐼2̇ = �̇�2 ∙ (−𝑌12 + 𝑌22 + 𝑌12) = 𝑌22�̇�2;   𝑌22 =
𝐼2̇

�̇�2
|
�̇�1=0.

. 

With a short circuit at the input (�̇�2 = 0) 

𝐼1̇ = �̇�1 ∙ (𝑌11 + 𝑌12 − 𝑌12) = 𝑌11�̇�1;   𝑌11 =
𝐼1̇

�̇�1
|
�̇�2=0

; 

𝐼2̇ = −�̇�1 ∙ (−𝑌12) + (𝑌21 − 𝑌12)�̇�1 = 𝑌21�̇�1;   𝑌21 =
𝐼2̇

�̇�1
|
�̇�2=0

. 

That is, the parameters 𝑌11, 𝑌12, 𝑌21, 𝑌22 obtained correspond to the 

relation (6.10), so the scheme of Fig. 6.7, satisfy the system (6.9). 

For a mutual two-port (𝑌12 = 𝑌21), the circuit of the substitution is 

simplified (fig. 6.8), since the dependent current source (𝑌21 − 𝑌12)�̇�1 

disappears. 

 
Fig. 6.8 

 

The system of equations (6.23) in Z-parameters can be matched to 

the equivalent scheme (Fig. 6.9). 

 
Fig. 6.9 

 

Here, a current source 
𝑍12

𝑍11
𝐼2̇ with a parallel impedance 𝑍11 can be 

converted into a voltage source 
𝑍12

𝑍11
𝑍11𝐼2̇ = 𝑍12𝐼2̇ corresponding to the 

second term on the right side of equation (6.23), the first term in which 
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is provided by current 𝐼1̇ and impedance 𝑍11. The current source 
𝑍21

𝑍22
𝐼1̇ 

with a parallel impedance 𝑍22 can be converted into a voltage source 
𝑍21

𝑍22
𝑍22𝐼1̇ = 𝑍21𝐼1̇, corresponding to the first term on the right side of 

equation (6.23), the second term being provided by current 𝐼2̇ and 

resistance 𝑍22. 

The scheme of fig. 6.10 also satisfies the system (6.23). 
 

 
Fig. 6.10 

 

Indeed, at idling at the input (𝐼1̇ = 0) 

�̇�1 = 𝐼2̇𝑍12;   𝑍12 =
�̇�1

𝐼2̇
|
𝐼1̇=0

; 

�̇�2 = 𝐼2̇𝑍22;   𝑍22 =
�̇�2

𝐼2̇
|
𝐼1̇=0

. 

At idling at the output (𝐼2̇ = 0) 

𝐼1̇(𝑍11 − 𝑍12) + 𝐼1̇𝑍12 = �̇�1;   𝑍11 =
�̇�1

𝐼1̇
|
𝐼2̇=0

; 

�̇�2 − 𝐼1̇𝑍12 − (𝑍21 − 𝑍12)𝐼1̇=0;   𝑍21 =
�̇�2

𝐼1̇
|
𝐼2̇=0

. 

That is, the obtained parameters 𝑍11, 𝑍12, 𝑍21, 𝑍22 correspond to 

the relation (6.24), therefore, the scheme of Fig. 6.10 satisfies the 

system (6.23). 

For a mutual two-port (𝑍12 = 𝑍21), the scheme of substitution is 

simplified (Fig. 6.11), since the dependent voltage source (𝑍21 − 𝑍12) is 

absent. 

 
Fig. 6.11 
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The system of equations (6.30) in H-parameters can be placed in 

accordance with the equivalent scheme (Fig. 6.12) 

 
Fig. 6.12 

 

Here, the voltage source 𝐻12�̇�2 corresponds to the second term on 

the right side of the first equation (6.30), the first term in which is 

provided by current 𝐼1̇ and impedance 𝐻11. The current source 𝐻21𝐼1̇ 

corresponds to the first term in the right side of the second equation 

(6.30), the second term in which is provided by voltage �̇�2 and 

conductivity 𝐻22. 

The system of equations (6.35) in G-parameters can be placed in 

accordance with the equivalent circuit of fig. 6.13. Here, the current 

source 𝐺12𝐼2̇ corresponds to the second part of the right-hand side of the 

equation (6.35), the first term of which is provided by voltage �̇�1 and 

conductivity 𝐺11. The voltage source 𝐺21�̇�1 corresponds to the first 

term of the right-hand side of the second equation (6.35), the second 

term in which is provided by current 𝐼2̇ and impedance 𝐺22. 

 
Fig. 6.13 

 

Equivalent circuits for replacing two-port, built on the basis of A- 

and B-transmission parameters, are usually not used. 

 

 

6.5 Complex input and transfer functions of the two-port 

 

The primary ones are called Y-, Z-, A-, B-, H-, G- two-port 

parameters. They not depend on the outer circuit. Complex functions of 

the two-port – the ratio of the voltages and currents on its terminals – 
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taking into account the external circuit - are called secondary parameters 

of the two-port. Consider them. 

Input conductivity and input impedance 

𝑌𝑖𝑛1 = 𝑌𝑖𝑛 =
𝐼1̇

�̇�1
;   𝑍𝑖𝑛1 = 𝑍𝑖𝑛 =

�̇�1

𝐼1̇
.                   (6.43) 

Output conductivity and output impedance 

𝑌𝑖𝑛2 = 𝑌𝑜𝑢𝑡 =
𝐼2̇

�̇�2
;   𝑍𝑖𝑛2 = 𝑍𝑜𝑢𝑡 =

�̇�2

𝐼2̇
. 

 

For Fig. 6.4 of the equations of the two-ports in Y-parameters we 

have 

{
𝐼1̇ = 𝑌11�̇�1 + 𝑌12�̇�2;                  

𝐼2̇ = 𝑌21�̇�1 + 𝑌22�̇�2 = −𝑌𝑙�̇�2.
    (6.44) 

where 

𝑌𝑙 =
1

𝑍𝑙
. 

That is 

𝑌21�̇�1 = −(𝑌22 + 𝑌𝑙)�̇�2, 

where  

�̇�2 = −
𝑌21

𝑌22 + 𝑌𝑙
�̇�1.                                        (6.45) 

Now we can find from expressions (6.43 – 6.45) 

𝑌𝑖𝑛1 = 𝑌𝑖𝑛 =
𝐼1̇

�̇�1
= 𝑌11 −

𝑌12𝑌21
𝑌22 + 𝑌𝑙

. 

On the principle of duality   

𝑍𝑖𝑛1 = 𝑍𝑖𝑛 =
�̇�1

𝐼1̇
= 𝑍11 −

𝑍12𝑍21
𝑍22 + 𝑍𝑙

. 

Similarly, from the output clamps (for 𝐸𝑖𝑛 = 0) 

𝑌𝑖𝑛2 = 𝑌𝑜𝑢𝑡 =
𝐼2̇

�̇�2
= 𝑌22 −

𝑌12𝑌21
𝑌11 + 𝑌𝑖𝑛𝑝

; 

𝑍𝑖𝑛2 = 𝑍𝑜𝑢𝑡 =
�̇�2

𝐼2̇
= 𝑍22 −

𝑍12𝑍21
𝑍11 + 𝑍𝑖𝑛𝑝

, 

where 
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𝑌𝑖𝑛𝑝 =
1

𝑍𝑖𝑛𝑝
. 

Transmitting function or transmission factor by voltage 

�̇�𝑈 = 𝐾𝑈𝑒
𝑖φ𝑈 =

�̇�2

�̇�1
,                                  (6.46) 

where 𝐾𝑈, φ𝑈 - the module and the argument of the transfer function on 

the voltage. 

For Fig.6.4 of the equations of the two-port in A-parameters (6.26), 

taking into account the expression (6.45), we have: 

�̇�𝑈 =
�̇�2

�̇�1
= −

�̇�2

𝐴11�̇�2 − 𝐴12𝐼2̇
=

1

𝐴11 + 𝐴12𝑌𝑙
= −

𝑌21
𝑌22 + 𝑌𝑙

.  (6.47) 

Transmitting function or transfer factor by current 

�̇�𝐼 = 𝐾𝐼𝑒
𝑖φ𝐼 = −

𝐼2̇

𝐼1̇
,                                  (6.48) 

where 𝐾𝐼, φ𝐼 – the module and the argument of the transfer function by 

current. 

For fig. 6.4 of the equations of the two-port in A- parameters (6.26) 

we obtain the principle of duality 

�̇�𝐼 = −
𝐼2̇

𝐼1̇
= −

𝐼2̇

𝐴21�̇�2 − 𝐴22𝐼2̇
=

1

𝐴21𝑍𝑙 + 𝐴22
=

𝑍21
𝑍22 + 𝑍𝑙

.  (6.49) 

Operating voltage ratio 

�̇�𝑈 𝑤 =
�̇�2

�̇�𝑖𝑛
. 

For Fig.6.4, taking into account the expression (6.47), we obtain 

�̇�𝑈 𝑤 =
�̇�2

𝑍𝑖𝑛𝑝𝑌𝑖𝑛�̇�1 + �̇�1
=

�̇�𝑈
1 + 𝑍𝑖𝑛𝑝𝑌𝑖𝑛

= 

=
−

𝑌21
𝑌22 + 𝑌𝑙

1 +
𝑌𝑖𝑛
𝑌𝑖𝑛𝑝

= −
𝑌21

(𝑌22 + 𝑌𝑙) (1 +
𝑌𝑖𝑛
𝑌𝑖𝑛𝑝

)
. 

Transmitting conductivity and transmission impedance 

𝑌𝑡𝑟 = −
𝐼2̇

�̇�1
;   𝑍𝑡𝑟 =

�̇�2

𝐼1̇
. 

For fig. 4, taking into account the expressions (6.46) and (6.48), we 

obtain 
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𝑌𝑡𝑟 =
𝑌𝑙�̇�2

�̇�1
=𝑌𝑙�̇�𝑈; 

𝑍𝑡𝑟 = −
𝐼2̇𝑍𝑙

𝐼1̇
=𝑍𝑙�̇�𝐼. 

Table 6.3 is given expressions for calculation circuit complex 

function of two- ports through Y- and Z-parameters and using 

determinants of matrixes loop impedances (MLI) and matrixes of node 

conductivity (MNC). 

Table 6.3 
Function Y, Z MLI MNC 

𝑌𝑖𝑛 =
𝐼1̇

�̇�1
 𝑌11 −

𝑌12𝑌21
𝑌22 + 𝑌𝑙

 
∆11 + 𝑍𝑙∆11,22
∆ + 𝑍𝑙∆22

 
∆ + 𝑌𝑙∆22

∆11 + 𝑌𝑙∆11,22
 

𝑍𝑖𝑛 =
�̇�1

𝐼1̇
 𝑍11 −

𝑍12𝑍21
𝑍22 + 𝑍𝑙

 
∆ + 𝑍𝑙∆22

∆11 + 𝑍𝑙∆11,22
 

∆11 + 𝑌𝑙∆11,22
∆ + 𝑌𝑙∆22

 

𝑌𝑜𝑢𝑡 =
𝐼2̇

�̇�2
 𝑌22 −

𝑌12𝑌21
𝑌11 + 𝑌𝑖𝑛𝑝

 
∆22 + 𝑍𝑖𝑛𝑝∆11,22

∆ + 𝑍𝑖𝑛𝑝∆11
 

∆ + 𝑌𝑖𝑛𝑝∆11

∆22 + 𝑌𝑖𝑛𝑝∆11,22
 

𝑍𝑜𝑢𝑡 =
�̇�2

𝐼2̇
 𝑍22 −

𝑍12𝑍21
𝑍11 + 𝑍𝑖𝑛𝑝

 
∆ + 𝑍𝑖𝑛𝑝∆11

∆22 + 𝑍𝑖𝑛𝑝∆11,22
 

∆22 + 𝑌𝑖𝑛𝑝∆11,22

∆ + 𝑌𝑖𝑛𝑝∆11
 

�̇�𝑈 =
�̇�2

�̇�1
 −

𝑌21
𝑌22 + 𝑌𝑙

 −
𝑍𝑙∆12

∆ + 𝑍𝑙∆22
 

∆12
∆11 + 𝑌𝑙∆11,22

 

�̇�𝐼 = −
𝐼2̇

𝐼1̇
 

𝑍21
𝑍22 + 𝑍𝑙

 
∆12

∆11 + 𝑍𝑙∆11,22
 

𝑌𝑙∆12
∆ + 𝑌𝑙∆22

 

𝑌𝑡𝑟 = −
𝐼2̇

�̇�1
 −

𝑌𝑙𝑌21
𝑌22 + 𝑌𝑙

 
∆12

∆ + 𝑍𝑙∆22
 

𝑌𝑙∆12
∆11 + 𝑌𝑙∆11,22

 

𝑍𝑡𝑟 =
�̇�2

𝐼1̇
 

𝑍𝑙𝑍21
𝑍22 + 𝑍𝑙

 
𝑍𝑙∆12

∆11 + 𝑍𝑙∆11,22
 

∆12
∆ + 𝑌𝑙∆22

 

 

  

6.6. Characteristic parameters of the two-port 

 

Characteristic parameters are convenient for the description of such 

types of two-ports as lines of communication, lines of delay, filters and 

others. They are used to describe the mutual two-ports. There are two 

types of characteristic parameters: characteristic impedance and 

characteristic transmission coefficient. 
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The characteristic impedances𝑍𝑐1, 𝑍𝑐2 are the impedances between 

the terminals 1-1’ and 2-2’ respectively (see Fig. 6.4), in which the 

conditions of the matching are in place: 

𝑍𝑖𝑛 = 𝑍𝑖𝑛𝑝 = 𝑍11 −
𝑍12𝑍21
𝑍22 + 𝑍𝑙

;                           (6.50) 

𝑍𝑜𝑢𝑡 = 𝑍𝑙 = 𝑍22 −
𝑍12𝑍21

𝑍11 + 𝑍𝑖𝑛𝑝
.                           (6.51) 

In this case there is no disturbance of the signal when it passes 

through the two-port and in the load the maximum power is transmitted. 

Then 

{
𝑍𝑐1 = 𝑍𝑖𝑛 = 𝑍𝑖𝑛𝑝;

𝑍𝑐2 = 𝑍𝑜𝑢𝑡 = 𝑍𝑙 .
    (6.52) 

Substituting expressions (6.50) and (6.51) in (6.52) and taking into 

account the correlation of the table 6.1, we get 

𝑍𝑐1 = √𝑍1𝑥𝑍1𝑘;   𝑍𝑐2 = √
𝑍22
𝑌22

,                          (6.53) 

or through one-sided parameters (6.39) - (6.42) we have 

𝑍𝑐1 = √𝑍1𝑥𝑍1𝑘;   𝑍𝑐2 = √𝑍2𝑥𝑍2𝑘 .                   (6.54) 

For symmetrical two-ports (𝑍1𝑥 = 𝑍2𝑥 = 𝑍𝑥, 𝑍1𝑘 = 𝑍2𝑘 = 𝑍𝑘) 

𝑍𝑐1 = 𝑍𝑐2 = 𝑍𝑐 = √𝑍𝑥𝑍𝑘 . 

Characteristic transmission ratio γ is determined from the ratio 

�̇�𝑈�̇�𝐼 =
�̇�2

�̇�1
(−

𝐼2̇

𝐼1̇
) = 𝑒−2γ.                          (6.55) 

Substituting expressions 6.47) and (6.49) into (6.55), we find 

γ =
1

2
ln [−

(𝑌22 + 𝑌𝑙)(𝑍22 + 𝑍𝑙)

𝑌21𝑍21
] . 

If in the load matching, in accordance with the expressions (6.52) 

and (6.53) 

(𝑌22 + 𝑌𝑙)(𝑍22 + 𝑍𝑙) = (𝑌22 +√
𝑌22
𝑍22

)(𝑍22 +√
𝑍22
𝑌22

) = 

= (√𝑍22𝑌22 + 1)
2
 

and from tabl. 5.1 
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−𝑌21𝑍21 =
𝑌21
2

[𝑌]
=
𝑌11𝑌22 − [𝑌]

[𝑌]
=
𝑌11𝑌22
[𝑌]

− 1 = 

= 𝑍22𝑌22 − 1 = 𝑍11𝑌11 − 1. 
Then 

γ =
1

2
ln
√𝑍11𝑌11 + 1

√𝑍11𝑌11 − 1
=
1

2
ln
√𝑍22𝑌22 + 1

√𝑍22𝑌22 − 1
.            (6.56) 

By the formulas (6.39) - (6.42) 

𝑍11𝑌11 =
𝑍1𝑥
𝑍1𝑘

;   𝑍22𝑌22 =
𝑍2𝑥
𝑍2𝑘

. 

Then from the expression (6.56) 

γ =
1

2
ln
1 + √

𝑍1𝑘
𝑍1𝑥

1 − √
𝑍1𝑘
𝑍1𝑥

=
1

2
ln
1 + √

𝑍2𝑘
𝑍2𝑥

1 − √
𝑍2𝑘
𝑍2𝑥

.                    (6.57) 

By analogy with the ratio  

arcth 𝑦 =
1

2
ln
𝑦 + 1

𝑦 − 1
. 

From formula (6.56) we find an expression γ due to hyperbolic 

functions 

γ = arcth√𝑍11𝑌11 = arcth√𝑍22𝑌22 .   (6.58) 

In general, the characteristic transmission coefficient is complex 

function 

γ = α + 𝑗β,    (6.59) 

where α – the actual attenuation of the two port, β – the phase 

coefficient. 

To find out the physical meaning of the values α and β, we will 

express 𝐾𝑈 and 𝐾𝐼 through α, β, γ. In the load matching.  

�̇�1 = 𝐼1̇𝑍𝑖𝑛𝑝 = 𝐼1̇𝑍𝑐1; �̇�2 = −𝐼2̇𝑍𝑙 = −𝐼2̇𝑍𝑐2. 

Then, by the formula (6.55) 

𝑒−2𝛾 =
�̇�2

�̇�1
(−

𝐼2̇

𝐼1̇
) =

�̇�2

�̇�1

�̇�2
𝑍𝑐2

𝑍𝑐1

�̇�1
=
�̇�2
2

�̇�1
2

𝑍𝑐1
𝑍𝑐2

= 𝐾𝑈
2
𝑍𝑐1
𝑍𝑐2

, 

where 

𝐾𝑈 = √
𝑍𝑐2
𝑍𝑐1

𝑒−𝛾.                                     (6.60) 
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Similarly 

𝐾𝐼 = √
𝑍𝑐1
𝑍𝑐2

𝑒−𝛾. 

From expression (6.60) can be written 

�̇�𝑈 = √
𝑍𝑐2
𝑍𝑐1

𝑒𝑗
1
2
(φ𝑐2−φ𝑐2)𝑒−(α+𝑗β) = √

𝑍𝑐2
𝑍𝑐1

𝑒−α𝑒
𝑗(β+

φ𝑐2−φ𝑐2
2

)
.  (6.61) 

Similarly (6.61) you can write the expression 𝐾𝐼. 
For a symmetrical two-port 

𝑍𝑐1 = 𝑍𝑐2, 

so 

𝐾𝑈 = 𝐾𝐼 = 𝑒
−γ = 𝑒−(α+𝑗β). 

From here 

α = ln
�̇�1

�̇�2
= ln

𝐼1̇

𝐼2̇
=
1

2
ln
𝑆1
𝑆2

 

where 𝑆1 = �̇�1𝐼1̇, 𝑆2 = �̇�2𝐼2̇ – the total powers at the input and output of 

the two-port. 

Thus, the attenuation coefficient α determines the ratio of the 

voltage or current amplitudes at the input and output of the two-port, 

and the phase coefficient β indicates phase shift between the voltages or 

currents at the input and output of the two-port.  

The unit of attenuation α is Neper (Np). For 
�̇�1

�̇�2
= 𝑒, ln 𝑒 = 1Np, 

that is 1Np is the attenuation at which the amplitude of the voltage or 

current when the signal passes through two-port decreases in e times 

The unit of the coefficient α may be Bell (B). For example 
�̇�1

�̇�2
= 10

1

2
𝑙𝑛10 = 1, that 1B is attenuation, in which the signal power, 

when passing through the two-port decreases by 10 times. 

Note: 1Np = 0.869B = 8.69dB; 1 decibel (dB) 10 is less 

times than 1B; 1dB = 0.1B = 0.115Np. 
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6.7. The equations of the two-ports in hyperbolic functions 

 

Let's express A-parameters of the two-port through of its 

characteristic parameters. From expressions (6.53), (6.58) and tabl. 6.1 

we get: 

𝑍𝑐1 = √
𝑍11
𝑌11

= √
𝐴11𝐴12
𝐴21𝐴22

;    𝑍𝑐2 = √
𝑍22
𝑌22

= √
𝐴22𝐴12
𝐴21𝐴11

;      (6.62) 

γ = arcth√𝑍11𝑌11 = arcth√
𝐴11𝐴22
𝐴21𝐴12

, 

that is 

cth γ = √
𝐴11𝐴22
𝐴21𝐴12

.                                 (6.63) 

From the expressions (6.62) and (6.63) we find 

{
 
 

 
 
𝐴11 = √

𝑍𝑐1
𝑍𝑐2

ch γ;  𝐴12 = √𝑍𝑐1𝑍𝑐2sh γ;

𝐴21 =
1

√𝑍𝑐1𝑍𝑐2
sh γ;  𝐴11 = √

𝑍𝑐2
𝑍𝑐1

ch γ;  

              (6.64) 

Thus, according to formulas (6.26) and (6.64) we write the system 

of their equations in hyperbolic functions: 

{
 
 

 
 
�̇�1 = √

𝑍𝑐1
𝑍𝑐2

(�̇�2ch γ + 𝑍𝑐2𝐼2̇sh γ);  

𝐼1̇ = √
𝑍𝑐2
𝑍𝑐1

(
�̇�2
𝑍𝑐2

sh γ + 𝐼2̇ch γ) .     

               

 

 

6.8. The simplest two-ports 

 

Ideal transformer (Fig. 6.14). This is a two-port, which does not 

dissipate and does not accumulate energy, that is, the ideal transformer 

is a passive device. 
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Powers at the input and output of the transformer are the same: 

 
Fig. 6.14 

 

𝑢1𝑖1 = −𝑢2𝑖2. 

Transformation factor 

𝑛 =
𝑢1
𝑢2
= −

𝑖2
𝑖1

, 

so 

{

𝑢1 = 𝑛𝑢2; 

𝑖1 = −
1

𝑛
𝑖2; 

 

or 

[
�̇�1
𝐼1̇
] = [

𝑛 0

0
1

𝑛
] [
�̇�2
−𝐼2̇

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] [
�̇�2
−𝐼2̇

]. 

That is, the equation of an ideal transformer is expressed in A-

parameters. 

If 

𝑌11 =
𝐼1̇

�̇�1
|
�̇�2=0

→ ∞;        𝑍11 =
�̇�1

𝐼1̇
|
𝐼2̇=0

→ ∞, 

then the ideal transformer does not have Y- and Z-the parameters. 

Gyrator. This is a device that in most cases has a theoretical 

interest. Almost a device with properties of a gyrator can be constructed 

on microwave elements (MWE), as well as by means of transistors. 

 

 
Fig. 6.15 
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The gyrator (Fig. 6.15) is described by the ratio 

−
𝑢1
𝑖2
=
𝑢2
𝑖1
= 𝑘,                                      (6.66) 

where 𝑘 – the coefficient of gyration. 

From expression (6.66) 

{
𝑢1 = −𝑘𝑖2; 
𝑢2 = 𝑘𝑖1;    

                                         (6.67) 

or 

[
�̇�1
�̇�2
] = [

0 −𝑘
𝑘 0

] [
𝐼1̇
𝐼2̇
] = [

𝑍11 𝑍12
𝑍21 𝑍22

] [
𝐼1̇
𝐼2̇
] .            (6.68) 

That is, the equation of the gyrator is expressed in the Z-

parameters. 

In the matrix Z-parameters of the girator (6.68) 𝑍12 ≠ 𝑍21, that is, 

the girator does not satisfy the principle of reciprocity. 

If the powers at the input and output of the gyrator are the same 

𝑢1𝑖1 = −𝑢2𝑖2, 
then the gyrator is a passive element. 

From expression (6.66), if 𝑍𝑙 = −
𝑢2

𝑖2
, then  

𝑍𝑖𝑛1 =
�̇�1

𝐼1̇
= −

𝑘𝐼2̇

�̇�2
𝑘

=
𝑘2

𝑍𝑙
 

Thus, the gyrator converts the impedance 𝑍𝑙 at the output 

impedance to the input impedance 
𝑘2

𝑍𝑙
. At 𝑘 = 1 the impedance is 

inverted into conductivity. For example, if, 𝑍𝑙 = 𝑗ω𝐿 tihen 
1

𝑍𝑙
=

1

𝑗ω𝐿
=

1

𝑗ω𝐶e
, ie 𝐶e = 𝐿 (inductance 1H at the output is transformed into 

capacitance 1F at the input.) 

The gyrator in the theory of circuit was introduced in 1948 by 

Telegen. 

Negative Convertor (KNI). This is a device that allows you to 

convert any impedance of 𝑍𝑙 into impedance −𝑍𝑙 with opposite sign. 

The negative impedance converter is described by the ratio 
𝑢1
𝑖1
= −(

𝑢2
−𝑖2

) .                                     (6.69) 

Condition (6.69) is satisfied with 

𝑢1 = 𝑘𝑢2;    𝑖1 = −𝑘(−𝑖2),                         (6.70) 
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or 

[
�̇�1
𝐼1̇
] = [

𝑘 0
0 −𝑘

] [
�̇�2
−𝐼2̇

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] [
�̇�2
−𝐼2̇

].  (6.71) 

In terms (6.70) and (6.71), the coefficient 𝑘 is simultaneously the 

transformation factor of voltage and current, that is, KNI can transform 

power. 

 

 

6.9 Complex two-ports  

 

Two-ports are called complicated, which can be represented as a 

combination of several simple two-ports. If known parameters of simple 

two-ports, then you can express complex parameters. There are several 

ways of connecting simple two-ports in the formation of complex two-

port. 

Series connection (fig. 6.16). 

 

 
Fig. 6.16 

 

With 

[
�̇�1
�̇�2
] = [

�̇�1
′

�̇�2
′] + [

�̇�1
′′

�̇�2
′′] = [

�̇�1
′ + �̇�1

′′

�̇�2
′ + �̇�2

′′] , [
𝐼1̇
𝐼2̇
] = [

𝐼1̇
′

𝐼2̇
′ ] = [

𝐼1̇
′′

𝐼2̇
′′] , 

then 

[
�̇�1
�̇�2
] = [

𝑍11 𝑍12
𝑍21 𝑍22

] [
𝐼1̇
𝐼2̇
] = {[

𝑍11
′ 𝑍12

′

𝑍21
′ 𝑍22

′ ] + [
𝑍11
′′ 𝑍12

′′

𝑍21
′′ 𝑍22

′′ ]} [
𝐼1̇
𝐼2̇
]. 

That is, with the series connection of the two-ports their matrices of 

Z-parameters are summed up: 
[𝑍] = [𝑍′] + [𝑍′′]. 
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Parallel connection (fig. 6.17) 

 
Fig. 6.17 

With 

[
�̇�1
�̇�2
] = [

�̇�1
′

�̇�2
′] = [

�̇�1
′′

�̇�2
′′] , [

𝐼1̇
𝐼2̇
] = [

𝐼1̇
′

𝐼2̇
′ ] + [

𝐼1̇
′′

𝐼2̇
′′] , 

then 

[
𝐼1̇
𝐼2̇
] = [

𝑌11 𝑌12
𝑌21 𝑌22

] [
�̇�1
�̇�2
] = {[

𝑌11
′ 𝑌12

′

𝑌21
′ 𝑌22

′ ] + [
𝑌11
′′ 𝑌12

′′

𝑌21
′′ 𝑌22

′′ ]} [
�̇�1
�̇�2
]. 

that is, at the parallel connection of the two-ports their matrices of Y-

parameters are summed up: 
[𝑌] = [𝑌′] + [𝑌′′]. 

 

Series-parallel connection (fig. 6.18) 

 

 
Fig. 6.18 

 

With 

[
�̇�1
𝐼2̇
] = [

�̇�1
′

𝐼2̇
′ ] + [

�̇�1
′′

𝐼2̇
′′ ] = [

�̇�1
′ + �̇�1

′′

𝐼2̇
′ + 𝐼2̇

′′ ] , [
𝐼1̇
�̇�2
] = [

𝐼1̇
′

�̇�2
′] = [

𝐼1̇
′′

�̇�2
′′] , 

then 
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[
�̇�1
𝐼2̇
] = [

𝐻11 𝐻12
𝐻21 𝐻22

] [
𝐼1̇
�̇�2
] = {[

𝐻11
′ 𝐻12

′

𝐻21
′ 𝐻22

′ ] + [
𝐻11
′′ 𝐻12

′′

𝐻21
′′ 𝐻22

′′ ]} [
𝐼1̇
�̇�2
]. 

That is, in the case of a series-parallel connection of the two-ports, 

their matrices of Y- parameters are summed up: 
[𝐻] = [𝐻′] + [𝐻′′]. 

 

Parallel-series connection (fig. 6.19). 

 

 
Fig. 6.19 

 

With 

[
𝐼1̇
�̇�2
] = [

𝐼1̇
′

�̇�2
′] + [

𝐼1̇
′′

�̇�2
′′] = [

𝐼1̇
′ + 𝐼1̇

′′

�̇�2
′ + �̇�2

′′] , [
�̇�1
𝐼2̇
] = [

�̇�1
′

𝐼2̇
′ ] = [

�̇�1
′′

𝐼2̇
′′ ] , 

then 

[
𝐼1̇
�̇�2
] = [

𝐺11 𝐺12
𝐺21 𝐺22

] [
�̇�1
𝐼2̇
] = {[

𝐺11
′ 𝐺12

′

𝐺21
′ 𝐺22

′ ] + [
𝐺11
′′ 𝐺12

′′

𝐺21
′′ 𝐺22

′′ ]} [
�̇�1
𝐼2̇
]. 

That is, at the parallel-serial connection of the two-port, their 

matrices of G- parameters are summed up: 
[𝐺] = [𝐺′] + [𝐺′′]. 

Cascade connection (fig. 6.20). 

 

 
Fig. 6.20 
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With 

[
�̇�1
𝐼1̇
] = [

�̇�1
′

𝐼1̇
′ ] ;  [

�̇�2
′

−𝐼2̇
′] = [

�̇�1
′′

𝐼1̇
] ;  [

�̇�2
−𝐼2̇

′′
] = [

�̇�2
−𝐼2̇

] , 

then 

[
�̇�1
𝐼1̇
] = [

𝐴11 𝐴12
𝐴21 𝐴22

] [
�̇�2
−𝐼2̇

] = [
𝐴11
′ 𝐴12

′

𝐴21
′ 𝐴22

′ ] [
𝐴11
′′ 𝐴12

′′

𝐴21
′′ 𝐴22

′′ ] [
�̇�2
−𝐼2̇

] 

That is, at the cascade connection of the two-ports, their matrices of 

A-parameters are multiplied in the order of the location of the two-ports: 
[𝐴] = [𝐴′][𝐴′′]. 

Of great practical importance is the cascade connection n-th 

number of two-ports with characteristic transmission coefficients γ̇1, 

γ̇2,…, γ̇𝑛 and characteristic impedances 𝑍𝑐1 and 𝑍𝑐2, 𝑍𝑐2 and 𝑍𝑐3, …, 

𝑍𝑐𝑛 and 𝑍𝑐𝑛+1 (fig.6.21). 

 

 
Fig. 6.21 

 

The characteristic impedances of two-ports are matched, that is, the 

load 𝑍𝑙 is matched with the output characteristic impedance 𝑍𝑐𝑛−1 of the 

n-th two-port. Its input impedance is equal to the characteristic 

impedance 𝑍𝑐𝑛 and is matched witch load of n-1 two-port etc. Input 

impedance of the first two-port also equal characteristic impedance 𝑍𝑐1. 

For the fig. 6.21 according to formula (6.60) 

�̇�𝑈 =
�̇�𝑛+1

�̇�1
= √

𝑍𝑐𝑛+1
𝑍𝑐1

𝑒�̇�, 

where, �̇� = �̇�1 + �̇�2 +⋯+ �̇�𝑛, that is, the cascade connection of two-

ports is equivalent to single two-port, whose characteristic impedances 

are equal to the input characteristic impedance of the first and the output 

characteristic impedance of the last two-port. The characteristic transfer 

coefficient of the resulting two-port is equal to the algebraic sum of the 

characteristic coefficients of transmission of the individual two-ports. 
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Example 6.5. 

Find A-parameters of the two-port according to the circuit in Fig. 

6.22. 

 
Fig. 6.22 

 

Let us introduce the circuit in the form of a cascade connection of 

simple two-ports I-IV (Fig. 6.23); A-parameters for each of them are 

obtained by the formula (6.27): 

 

 
Fig. 6.23  

 

[𝐴І] = [
𝐴11
І 𝐴12

І

𝐴21
І 𝐴22

І ] = [
1 𝑟1
0 1

] ;  [𝐴ІІ] = [
𝐴11
ІІ 𝐴12

ІІ

𝐴21
ІІ 𝐴22

ІІ ] = [

1 0
1

𝑟2
+ 𝑗ω𝐶 1] ;  

[𝐴ІІІ] = [
𝐴11
ІІІ 𝐴12

ІІІ

𝐴21
ІІІ 𝐴22

ІІІ ] = [
1 𝑗ω𝐿
0 1

] ;  [𝐴ІV] = [
𝐴11
ІV 𝐴12

ІV

𝐴21
ІV 𝐴22

ІV ] = [

1 0
1

𝑟3
1] ; 

Now 

[𝐴] = [𝐴І][𝐴ІІ][𝐴ІІІ][𝐴ІV] = [
1 𝑟1
0 1

] [

1 0
1

𝑟2
+ 𝑗ω𝐶 1] [

1 𝑗ω𝐿
0 1

] × 

× [

1 0
1

𝑟3
1] =

[
 
 
 1 + 𝑟1 (

1

𝑟2
+ 𝑗ω𝐶) 𝑟1

1

𝑟2
+ 𝑗ω𝐶 1

]
 
 
 

[
 
 
 1 +

𝑗ω𝐿

𝑟3
𝑗ω𝐿

1

𝑟3
1
]
 
 
 

= 
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=

[
 
 
 [1 + 𝑟1 (

1

𝑟2
+ 𝑗ω𝐶)] (1 +

𝑗ω𝐿

𝑟3
) +

𝑟1
𝑟3

[1 + 𝑟1 (
1

𝑟2
+ 𝑗ω𝐶)] 𝑗ω𝐿 + 𝑟1

(
1

𝑟2
+ 𝑗ω𝐶) (1 +

𝑗ω𝐿

𝑟3
) +

1

𝑟3
(
1

𝑟2
+ 𝑗ω𝐶) 𝑗ω𝐿 + 1

]
 
 
 

 

 

 

Methodic instruction 

 

By study of section “Bases of two-ports theory” it’s necessary to 

concentrate the base attention on system of two-ports parameters, note 

difference between primary and secondary parameters, as their 

questions are introductory to characteristically parameters, which are 

studied late. Study of characteristically parameters it’s necessary by 

explain the such kind of two-ports as filters and long line. Useful to 

acquaintance which simple two-ports and methods their connection in 

complex two-ports.     

 

Literature [1 - 4], [14 - 16] 

 

Questions for self checking 

  

1. What are the two-ports and how they are classified? 

2. Write down the two-port  equation in Y-, Z-, A-, B-, H-, G-

parameters. 

3. How to determine the parameters of the two-port 

experimentally? 

4. What are the one-way parameters of the two-ports ? 

5. What parameters of the two-ports are called primary, secondary? 

6. What are the characteristic parameters of the two-ports? 

7. What are the simplest two-ports and how to connect them to 

then? 
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7. Electric filters 

 

7.1. General information about filters. Definitions and 

classification 

 
Electric filters were proposed at the end of the nineteenth century 

and since then they have found application in virtually all electrical and 

electronic devices. 

The theory of filters is represented by classical and modern filter 

theory. 

The classical theory is based on the application of characteristic 

parameters of the four - terminal network,(two-port) that is, it involves 

matching the load with the parameters of the filter, which is practically 

difficult to perform. Therefore, after calculating the terms of the 

agreement, experimentally specify. Classical theory does not provide 

optimal results, although it requires minimal time and effort. 

The modern theory of filters allows you to calculate optimal filters 

with high accuracy. It implies a preliminary approximation of the 

frequency characteristics of the filters by rational transmitting functions 

and further synthesis of circles for the implementation of these 

functions. 

Consider the classical theory of filters. 

An electric filter is called a two–port, which passes without 

attenuation signals with frequencies present in the bandwidth and holds 

signals with frequencies outside of this band (in the band of 

attenuation). 

Cut-off frequencies are frequencies at the boundary of the 

bandwidth. 

By location of the bandwidth distinguish: 

a) a low pass filter (LPF) (Fig. 7.1,а) 

It’s bandwidth is 0 ≤ 𝜔 ≤ 𝜔𝑐, where 𝜔 – the frequency of the 

signal, transmitted without damping, 𝜔𝑐 – cut-off frequency – (limit 

frequency of bandwidth). 

The dotted line in Fig. 7.1 shows real amplitude-frequency 

characteristics (AFC) 𝐾(𝜔); 
b) a high-pass filter (HPF) (Fig. 7.1; b), it’s bandwidth ω ≥ ω𝑐; 
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c) band pass filter (BPF) (Fig. 7.1, c); it’s bandwidth 𝜔𝑐1 ≤ 𝜔 ≤
𝜔𝑐2; 

d) rejection filter (RF) (Fig. 7.1, d); it’s bandwidth 𝜔𝑐1 ≥ 𝜔 ≥

𝜔𝑐2. 
 

 
a   b          c    d 

Fig. 7.1 

 

7.2. General properties of characteristic filters parameters 

 

Classical filter theory considers circuits composed entirely of 

reactive elements, that is, without taking into account losses, which 

leads to errors, since in real schemes there are always losses in the coils 

of inductance, capacitors, connecting conductors. These losses in the 

design of filters try to minimize. 

If the filter is a four-pole, then the characteristic parameters are 

used for its description, in particular the characteristic transmission 

coefficient (5.50). Therefore, it can be assumed that the filter is a four-

pole, which has a bandwidth of attenuation α = 0 and in a non-pass 

band α ≠ 0. In the ideal filter in the non-pass band α → ∞. 
In the classical theory for the construction of filters use 

symmetrical quadruple, which can be depicted in the form of П-like and 

T-like schemes replacement (Fig. 7.2). 

 

 
a    b  

Fig.7.2 
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These schemes are the links on which the filters of the chain (step) 

structure are constructed (Fig. 7.3). 

 

 
Fig. 7.3 

 

This construction will be clear if one considers that each of the П - 

like or T-like units can be divided into two Г-like links connected 

cascade (Fig. 7.4, 7.5). 

 

 
Fig. 7.4  

 

 
Fig. 7.5 

 

As already noted, one-way parameters of symmetric quadrupole 

poles 

𝑍𝑥 =
1

𝑌𝑥
;      𝑍𝑘 =

1

𝑌𝑘
.                              (7.1) 

With purely reactive filter elements 

𝑍𝑥 = 𝑗𝑥𝑥, 𝑍𝑘 = 𝑗𝑥𝑘.   (7.2) 
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Then the characteristic impedance of the filter by the expression 

(5.64) 

𝑍𝑐 = √𝑍𝑥𝑍𝑘 = √−𝑥𝑥𝑥𝑘.    (7.3) 

That is, the characteristic resistance of the filter is an actual value, 

if they have different signs (different in the nature of reactivity) and the 

imaginary magnitude, if they have the same signs. 

Taking into account the formulas (7.2), the characteristic 

transmission coefficient of the filter corresponding to the expression 

(5.57) has the form 

γ =
1

2
ln
1 + √

𝑍𝑘
𝑍𝑥

1 − √
𝑍𝑘
𝑍𝑥

=
1

2
ln

1 + √
𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

. 

Let's consider individual cases. 

Impedances 𝑥𝑥 and  𝑥𝑘 have the same signs. Then 𝑍𝑐 in formula 

(7.3) is imaginary. If so 

𝑒2𝛾 = 𝑒2(𝛼+𝑗𝛽) = 𝑒2𝛼𝑒𝑗2𝛽 =

1 + √
𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

, 

Than module 

𝑒2𝛼 = ||
1 + √

𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

||. 

and 

𝛼 =
1

2
ln ||
1 + √

𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

||.                                        (7.4) 

That is the module of the characteristic transmission coefficient is 

real and positive. 

Argument 
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𝛽 =
1

2
Arg

1 + √
𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

= 𝑙
𝜋

2
,                               (7.5) 

where 𝑙 = 0, ±1, ± 2, ... 

In the expression (7.5) the value under the sign Arg is purely valid 

and depending on the relation between 𝑥𝑥 and 𝑥𝑘 may be positive or 

negative. In the first case 

𝛽 =
1

2
Arg 𝑒2𝛾 =

1

2
arctg

Im(𝑒2𝛾)

Re(𝑒2𝛾)
= 0.  

In the second case, that is 𝛽 =
1

2
𝑙𝜋 = 𝑙

𝜋

2
, it corresponds to the 

expression (7.5). 

Thus, under the imaginary 𝑍𝑐 have α ≠ 0, that is the same signs 𝑥𝑥 

and 𝑥𝑘 correspond to the band suppression band of a filter. 

Impedances 𝑥𝑥 and 𝑥𝑘 have the different signs. Then formula (7.3) 

is valid. Also, according to formulas (7.4) and (7.5) we get 

α =
1

2
ln ||
1 + √

±𝑥𝑘
∓𝑥𝑥

1 − √
±𝑥𝑘
∓𝑥𝑥

|| =
1

2
ln
|

|
1 + 𝑗√

|𝑥𝑘|
|𝑥𝑥|

1 − 𝑗√
|𝑥𝑘|
|𝑥𝑥|

|

|
= 0; 

β =
1

2
Arg

1 + √
±𝑥𝑘
∓𝑥𝑥

1 − √
±𝑥𝑘
∓𝑥𝑥

= arctg√
|𝑥𝑘|

|𝑥𝑥|
. 

Thus, if we really 𝑍𝑐 we have α = 0, that is different signs 𝑥𝑥 and 

𝑥𝑘 correspond to the bandwidth of the filter. 

Consequently, we can conclude that, the frequencies, at which they 

𝑍𝑐 change their true value on the imaginary, and the reactance’s 𝑥𝑥 or 

𝑥𝑘 individually change the sign, lie on the boundary of the bandwidth, 

that are the cut off frequencies. 

The general properties of the characteristic parameters of the filters 

are given in Table. 7.1 
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Table 7.1 
Signs 

𝑥𝑥, 

𝑥𝑘 

𝑍𝑐 γ α β Band 
d

if
fe

re
n

t 

Real: 

𝑍𝑐 = 𝑅𝑐 
Im

ag
in

ar
y
 

0 

𝑥𝑥 < 0 

𝑥𝑘 > 0 
arctg√

|𝑥𝑘|

|𝑥𝑥|
 

𝑥𝑥 > 0 

𝑥𝑘 < 0 
−arctg√

|𝑥𝑘|

|𝑥𝑥|
 

 

T
ra

n
sm

is
si

o
n

 

eq
u

al
 

Imaginary: 

𝑍𝑐 = 𝑗𝑥𝑐  

R
ea

l 
o

r 

co
m

p
le

x
 

1

2
ln ||
1 + √

𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

|| 
𝑙
𝜋

2
 

𝑙 = 0, ±1,±2 n
o

n
-

tr
an

sm
is

si
o

n
 

 

 

7.3. Low - pass frequency filters 

 

Let us consider П- and T-like links in which 𝑍1 is inductance and 

𝑌2 – capacitance are taken (Fig. 7.6). We define one – sided parameters 

𝑍𝑥 and 𝑍𝑘 for these schemes. 

 

 
a    b 

Fig. 7.6 

 

For the П - like scheme (Fig. 7.6, a), at idling terminal 2-2' we have 
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𝑍𝑥П =

1

𝑗𝜔
𝐶2
2

(𝑗𝜔𝐿1 +
1

𝑗𝜔
𝐶2
2

)

1

𝑗𝜔
𝐶2
2

+ 𝑗𝜔𝐿1 +
1

𝑗𝜔
𝐶2
2

=

2
𝑗𝜔𝐶2

(𝑗𝜔𝐿1 +
2

𝑗𝜔𝐶2
)

4
𝑗𝜔𝐶2

+ 𝑗𝜔𝐿1

= 

(7.6) 

= −𝑗
2

𝜔𝐶2

2 − 𝜔2𝐿1𝐶2
4 − 𝜔2𝐿1𝐶2

= −𝑗𝑥𝑥П. 

When short-circuiting the clamps 2-2' we have for the П-like 

scheme  

𝑍𝑘П =

1

𝑗𝜔
𝐶2
2

𝑗𝜔𝐿1

1

𝑗𝜔
𝐶2
2

+ 𝑗𝜔𝐿1

=

2𝐿1
𝐶2

4
𝑗𝜔𝐶2

+ 𝑗𝜔𝐿1

= 𝑗
2𝜔𝐿1

2 − 𝜔2𝐿1𝐶2
= 𝑗𝑥𝑘П.   (7.7) 

For a T-like scheme (Fig. 7.6, b), at idling terminal 2-2' we have for 

the T-like scheme  

𝑍𝑘Т = 𝑗𝜔
𝐿1
2
+

1

𝑗𝜔𝐶2
= −𝑗

2 − 𝜔2𝐿1𝐶2
2𝜔𝐶2

= −𝑗𝑥𝑥Т.      (7.8) 

When short-circuiting the clamps 2-2' we have for the T-like 

scheme  

𝑍𝑘Т = 𝑗𝜔
𝐿1
2
+

1
𝑗𝜔𝐶2

𝑗𝜔
𝐿1
2

1
𝑗𝜔𝐶2

+ 𝑗𝜔
𝐿1
2

= 𝑗𝜔
𝐿1
2
+

𝐿1
2𝐶2

𝑗𝜔2𝐶2

2 − 𝜔2𝐿1𝐶2
= 

(7.9) 

= 𝑗𝜔
𝐿1
2
(1 +

2

2 − 𝜔2𝐿1𝐶2
) = 𝑗𝜔

𝐿1
2

4 − 𝜔2𝐿1𝐶2
2 − 𝜔2𝐿1𝐶2

= 𝑗𝑥𝑘Т. 

As noted earlier, at the cut off frequencies, impedances 𝑥𝑥 or 𝑥𝑘 

change their sign. Obviously, at the cut off frequencies, their values pass 

through zero, that is the cut off frequencies can be determined from the 

relations 

𝑥𝑥П = 0;  𝑥𝑘П = 0;  𝑥𝑥Т = 0;  𝑥𝑘Т = 0. 
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More than the obtained values determines is the cut off frequencies. 

From the expressions (7.6) - (7.9) it follows that the cut off frequencies 

can be determined from the ratio 

𝑥𝑘Т = 0, 

that is 

4 − 𝜔2𝐿1𝐶2 = 0  
where from 

𝜔𝑐 =
2

√𝐿1𝐶2
.                                   (7.10) 

Determine the characteristic impedance of the LPF. Let's denote 

𝑅 = √𝑍1𝑍2 = 𝑘, 

where  𝑍1 =  
1

𝑌1
 and  𝑍2 = 

1

𝑌2
 - impedances, belonging to the П–like and 

T-like skims of the filter sections. The value 𝑅 is called the nominal 

characteristic impedance of the filter. Filters, for which impedance 

𝑅 = 𝑘 = 𝑐𝑜𝑛𝑠𝑡 and valid, are called ''k'' filters. 

For the scheme in Fig.7.6 

𝑅 = √𝑍1𝑍2 = √𝑗𝜔𝐿1
2

𝑗𝜔𝐶2
= √

𝐿1 

𝐶2
.                  (7.11) 

From the expressions (7.10) and (7.11) we find 𝐿1 and 𝐶2 

𝐿1 =
2𝑅

𝜔𝑐
; 𝐶2 =

2

𝜔𝑐𝑅
.                                 (7.12) 

The characteristic impedance of the LPF is determined by the 

formula (7.3). For the П-like filter scheme, we use the expressions (7.6) 

and (7.7) 

𝑍𝑐П = √−𝑥𝑥П𝑥𝑘П = √
2

𝜔𝐶2

2 − 𝜔2𝐿1𝐶2
4 − 𝜔2𝐿1𝐶2

2𝜔𝐿1
2 − 𝜔2𝐿1𝐶2

= 

(7.13) 

= √
𝐿1
𝐶2

4

4 − 𝜔2𝐿1𝐶2
. 

For the Т-like filter scheme, using expressions (7.8) and (7.9), we 

get 
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𝑍𝑐Т = √−𝑥𝑥Т𝑥𝑘Т = √
2 −𝜔2𝐿1𝐶2
2𝜔𝐶2

𝜔𝐿1
2

4 − 𝜔2𝐿1𝐶2
2 − 𝜔2𝐿1𝐶2

= 

(7.14) 

= √
𝐿1
𝐶2

4 − 𝜔2𝐿1𝐶2
4

. 

Let substitute the expression (7.12) in the formulas (7.13) and 

(7.14). We have 

𝑍𝑐П =
𝑅

√1 − (
𝜔
𝜔𝑐
)
2

;    𝑍𝑐Т = 𝑅√1 − (
𝜔

𝜔𝑐
)
2

 .              (7.15) 

We introduce normalize characteristic impedances and frequencies 

𝑍𝑐𝑛 =
𝑍𝑐
𝑅

;    𝜔𝑛 =
𝜔

𝜔𝑐
.                              (7.16) 

Then we get the expression (7.15) 

𝑍𝑐П𝑛 =
1

√1 − ω2
;    𝑍𝑐Т𝑛 = √1 − 𝜔

2.                 (7.17) 

You can see that 

𝑍𝑐П𝑛𝑍𝑐Т𝑛 = 1.    (7.18) 

In Fig. 7.7  

 

 
Fig. 7.7 
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In fig. 7.7 the formulas (7.17) construct graphs for the change of 

characteristic impedances 𝑍𝑐П𝑛, 𝑍𝑐Т𝑛 from frequency ω𝑛. From the 

charts it is clear that the characteristic impedances 𝑍𝑐 is very dependent 

on the frequency. Therefore it is impossible the load impedance 

matching with the characteristic impedance of the filter at all 

frequencies. Typically, such matching is achieved at the same frequency 

within the bandwidth. 

Let’s defined attenuation and phase coefficient of low pass filter. In 

the formulas for determining 𝛾, α and 𝛽 in the relation 
𝑥𝑘

𝑥𝑥
 is present. We 

define this relation for the П- and T-like sections of the filter. For a П-

like scheme, using the expressions (7.6) and (7.7), we get 

𝑥𝑘П
𝑥𝑥П

=
−2𝜔𝐿1

2 − 𝜔2𝐿1𝐶2

𝜔𝐶2
2

4 − 𝜔2𝐿1𝐶2
2 − 𝜔2𝐿1𝐶2

= 

 (7.19) 

= −𝜔2𝐿1𝐶2
4 − 𝜔2𝐿1𝐶2
(2 − 𝜔2𝐿1𝐶2)

2
. 

For a T-like scheme, using expressions (7.8) and (7.9), we get 

𝑥𝑘Т
𝑥𝑥Т

=
−𝜔𝐿1
2

4 − 𝜔2𝐿1𝐶2
2 − 𝜔2𝐿1𝐶2

2𝜔𝐶2
2 − 𝜔2𝐿1𝐶2

= 

 (7.20) 

= −𝜔2𝐿1𝐶2
4 − 𝜔2𝐿1𝐶2
(2 − 𝜔2𝐿1𝐶2)

2
. 

Compare with expressions (7.19) and (7.20), we get that α and β in 

П- and T-like sections are defined by the same expressions. Using 

formulas (7.12), and go on to normalize values (7.16), we find  

𝑥𝑘П
𝑥𝑥П

=
𝑥𝑘Т
𝑥𝑥Т

=
4𝜔2(𝜔2 − 1)

(1 − 2𝜔𝑛
2)2

.                           (7.21) 

At bandwidth of LPF 

0 ≤ 𝜔 ≤ 𝜔𝑐 or 0 ≤ 𝜔𝑛 ≤ 1. 

At bandwidth of LPF (see Section 7.2) reactance 𝑥𝑥 and 𝑥𝑘 have 

different signs (compare expressions 7.6 – 7.9). Then (table. 7.1)   

{

α = 0;                   

β = arctg√|
𝑥𝑘
𝑥𝑥
|  .
                                       (7.22) 

Using expression (7.21), we get 
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𝛽 = arctg
2𝜔𝑛√𝜔𝑛

2 − 1

1 − 2𝜔𝑛
2 =arctg

2𝜔𝑛√1− 𝜔𝑛
2

(1 − 𝜔𝑛
2) − 𝜔𝑛

2 = 

(7.23) 

= arctg
2𝜔𝑛

√1 − 𝜔𝑛
2

1

1 −
𝜔𝑛
2

1 − 𝜔𝑛
2

. 

Let's denote  
𝜔𝑛

√1 − 𝜔𝑛
2
= tg𝛿 = 𝜑. 

Then from the expression (7.23) 

𝛽 = arctg
2𝜑

1 − 𝜑2
=arctg

2 tg𝜑

1 − tg2𝛿
= 2𝛿 =2arctg𝜑 = 

 

= 2arctg
𝜔𝑛

√1 − 𝜔𝑛
2
=2arcsin𝜔𝑛. 

That is, in the bandwidth of the LPF through the normalized values 

{
𝛼 = 0;                   
𝛽 = 2arcsin𝜔𝑛 .

     (7.24) 

In the band of non-transmission of the LPF 

𝜔𝑐 ≤ 𝜔 < ∞ or 1 ≤ 𝜔𝑛 < ∞. 

In the non-propagation band (see Section 7.2), the supports and 

have the same signs, as seen from the comparison of expressions (7.6) - 

(7.9). Then (Table. 7.1) 

{
𝛼 = 0;   

𝛽 = 𝑙
𝜋

2
.
 

where  𝑙 = 0,±1,±2,…. 

From expression (7.4), using (7.21), we get 

𝛼 =
1

2
𝑙𝑛 ||

1 + √
𝑥𝑘
𝑥𝑥

1 − √
𝑥𝑘
𝑥𝑥

|| =
1

2
ln |
|
1 +

2𝜔𝑛√𝜔𝑛
2 − 1

2𝜔𝑛
2 − 1

1 −
2𝜔𝑛√𝜔𝑛

2 − 1

2𝜔𝑛
2 − 1

|
| = 

=
1

2
ln |
(𝜔𝑛

2 − 1) + 2𝜔𝑛√𝜔𝑛
2 − 1 + 𝜔𝑛

2

(𝜔𝑛
2 − 1) − 2𝜔𝑛√𝜔𝑛

2 − 1 + 𝜔𝑛
2
| = 
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=
1

2
ln |
(𝜔𝑛 +√𝜔𝑛

2 − 1)
2

(𝜔𝑛 −√𝜔𝑛
2 − 1)

2| = ln |
𝜔𝑛 +√𝜔𝑛

2 − 1

𝜔𝑛 −√𝜔𝑛
2 − 1

| = 

= ln |
(𝜔𝑛 +√𝜔𝑛

2 − 1)
2

𝜔𝑛
2 − (𝜔𝑛

2 − 1)
| = ln |𝜔𝑛 +√𝜔𝑛

2 − 1| = 2 arch𝜔𝑛. 

The phase coefficient β in the non-transmissibility band can be 

determined by its value at the boundary of the non-transmissibility band, 

that is, at the cut off frequency ω𝑛 = 1. Then from the formula (7.24) 

𝛽 = 2arcsin𝜔𝑛 = 2arcsin1 = 2
𝜋

2
= 𝜋   (7.25) 

If in the non-transmission band  𝛽  =   𝑙
𝜋

2
 (Table 7.1), then by the 

formula (7.25) 𝑙 = 2. 

Thus, in the band of  rejection band of  LPF through the normalized 

value 

{
𝛼 = 2 arch𝜔𝑛 ;   
𝛽 = 𝜋.                  

     (7.26) 

In fig. 7.8, the formulas (7.22) and (7.26) construct graphs for 

damping change α and the phase coefficient β from the frequency ω𝑛. 

 

 
Fig. 7.8 

 

The frequency characteristics 𝛼(𝜔𝑛), 𝛽(𝜔𝑛), 𝑍𝑐(𝜔𝑛), which 

schown in Fig. 7.7 and 7.8, are called the universes normalized 

characteristics of the LPF. 

To increase the attenuation α in the of rejection band sections of 

LPF are connected in stage. Then accordance with the expression (7.24) 

in bandwidth 
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{
𝛼𝑛 = 0;                   
𝛽𝑛 = 2𝑛 arcsin𝜔𝑛 .

 

In the rejection band sections of LPF in accordance with the 

expression (7.26) 

{
𝛼𝑛 = 2𝑛 arch𝜔𝑛 ;   
𝛽𝑛 = 𝑛𝜋.                  

    (7.27) 

where n is the number of cascaded connected sections of the LPF. 

 

 

7.4. Derived filters like “m” 

 

The task of improving the selectivity of the LPF, in particular, the 

increase of attenuation in the rejection band section can be resolved on 

the basis of modifiable schemes of filters – filters like "m". The 

prototype for filters like "m" is a filter of type "k". For reception of a 

filter like "m" is necessary in the scheme of the filter of type "k" 

successive inductance 𝐿1 in the П-like scheme to replace by parallel 

connection 𝐿𝐶 circuit and parallel capacitance 𝐶2 in T-like scheme – by 

sequential oscillation 𝐿𝐶  circuit. The values of inductances and 

capacitance are chosen according to Fig. 7.9, where 𝐿1 and 𝐶2 are 

respectively the inductance and capacitance of a filter of type "k" (see 

Figure 7.6). 

The coefficient "m" lies within 0 ≤ 𝑚 ≤ 1. It is seen that for 

𝑚 =  1, the filter type "m" is converted into a filter of type "k". 

For sections of the filter type "m", the cut off frequency ω𝑐 and 

characteristic impedance remain equal to these values 𝑍𝑐 in the 

prototype (filter of type "k"). In Fig. 7.9 it is seen that the longitudinal 

branch in the П-like scheme is a parallel oscillatory circuit, whose 

resonant frequency ω∞П is defined by the expression  

𝜔∞П =
1

√𝑚𝐿1
1 −𝑚2

4𝑚
𝐶2

=
1

√1 −𝑚2

2

√𝐿1 𝐶2
=

1

√1 −𝑚2
𝜔𝑐 .  (7.28) 

 

From Fig. 7.9, b it is seen that the transverse branch in the T-like 

scheme is a sequential oscillatory circuit 𝐶, whose resonant frequency 

𝜔∞Т is determined by the expression 
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𝜔∞Т =
1

√1 −𝑚
2

4𝑚 𝐿1𝑚𝐶2

=
1

√1 −𝑚2

2

√𝐿1 𝐶2
=

1

√1 −𝑚2
𝜔𝑐 .   (7.29)  

 

At the frequency ω∞П impedance of the transverse branch in the П-

like scheme tends to ∞, that is 𝛼 → ∞. At the frequency 𝜔∞Т impedance 

of the transverse branch in the T-like scheme tends to 0, that is 

attenuation 𝛼 → ∞ .  

 
Fig. 7.9 

 

From expressions (7.28) and (7.29) it is shown, that 𝜔∞П  >  𝜔𝑐, 
𝜔∞Т > 𝜔𝑐 ,that at frequencies are more cat off frequency, attenuation 

of the filters sharply increase and selectance increase too.  

Graphics of change α from ω𝑛 are shown in fig. 7.10, where from 

one can see that attenuation α in filter type "m" after frequencies 

ω∞П, ω∞Т decries, approximating to the same ending meaning: 

𝛼П = ln
1 +𝑚П

1 −𝑚П
;  𝛼Т = ln

1 +𝑚Т

1 −𝑚Т
. 

 

 
Fig. 7.10 

 

Consider the characteristic impedance for a filter type "m". 
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In order to best match the load with the filter it is necessary that the 

characteristic impedance of the filter is as possible invariable within the 

bandwidth. 

Let's break each of every part of the filter type "m" (see Fig. 7.9) 

into a cascade connection of two half – link (Fig. 7.11 and Fig. 7.12). 

 

 
Fig. 7.11 

 

Characteristic impedance 𝑍𝑐1 to the left of the П-like (Fig. 7.11) 

and T-like (Fig.7.12) half - links, as the analysis shows, equal to the 

characteristic impedance 𝑍𝑐 of the full link 

𝑍𝐶1 = 𝑍𝐶  

 
Fig. 7.12 

Determine the characteristic impedance 𝑍𝑐2 of the half - links to the 

right. According to Fig. 7.11 

𝑥𝑥П2 =

1

𝑗𝜔
1 −𝑚2

2𝑚
𝐶2

𝑗𝜔
𝑚𝐿1
2

1
1

𝑗𝜔
1 −𝑚2

2𝑚 𝐶2

+ 𝑗𝜔
𝑚𝐿1
2

+
1

𝑗𝜔
𝑚𝐶2
2

= 

(7.30) 
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=
2𝑗𝜔𝐿1

4 − 𝜔2(1 − 𝑚2)𝐿1𝐶2
+

2

𝑗𝜔𝑚𝐶2
= −𝑗

2(4 − 𝜔2𝐿1𝐶2)

𝜔𝑚𝐶2[4 − 𝜔
2(1 − 𝑚2)𝐿1𝐶2]

. 

 

𝑥𝑘П2 =

1

𝑗𝜔
1 −𝑚2

2𝑚 𝐶2

𝑗𝜔
𝑚𝐿1
2

1

𝑗𝜔
1 −𝑚2

2𝑚 𝐶2

+ 𝑗𝜔
𝑚𝐿1
2

= 𝑗
2𝑚𝜔𝐿1

4 − 𝜔2(1 − 𝑚2)𝐿1𝐶2
.  (7.31) 

Then, using formula (7.3), using expressions (7.30) and (7.31), we 

get 

𝑍𝑐П2 = √−𝑥𝑥П2𝑥𝑘П2 = 

= √
2(4 − 𝜔2𝐿1𝐶2)

𝜔𝑚𝐶2[4 − 𝜔
2(1 − 𝑚2)𝐿1𝐶2]

2𝑚𝜔𝐿1
4 − 𝜔2(1 − 𝑚2)𝐿1𝐶2

= 

= √
𝐿1
𝐶2

4(4 − 𝜔2𝐿1𝐶2)

[4 − 𝜔2(1 − 𝑚2)𝐿1𝐶2]
2
. 

Taking into account the expressions (7.12) and passing to the 

normalized quantities (7.16), we have 

𝑍𝑐П2𝑛 =
√1 − 𝜔𝑛

2

1 − (1 −𝑚2)𝜔𝑛
2. 

From expression (7.18) 

𝑍𝑐Т2𝑛 =
1

𝑍𝑐П2𝑛
=
1 − (1 −𝑚2)𝜔𝑛

2

√1 − ω𝑛
2

. 

In fig. 7.13 and 7.14 dependencies 𝑍𝑐П2𝑛 and 𝑍𝑐Т2𝑛 from frequency 

𝜔𝑛 are constructed. It turns out that at 𝑚 ≈  0,6 the characteristic 

impedance 𝑍𝑐2 in a large part of the bandwidth does not change. This 

allows you to fulfill the condition for the matching of the load with the 

parameters of the filter. 

Half link filter type "m" can be used with links of type "k", which 

allows to take advantage of both one and second type of filters. 
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Fig. 7.13   Fig. 7.14 

 

 

7.5. Normalization of frequencies and impedances 

 

Let LPF be given with cat off frequency ω𝑐. In general, impedance 

of any branch of the filter is defined by the expression 

𝑍(𝑗𝜔) = 𝑟 + 𝑗𝜔𝐿 +
1

𝑗𝜔𝐶
. 

It is necessary to determine the elements of the filter with cutoff 

frequency 𝐾ωω, where 𝐾ω – the scale factor of frequency. 

Increasing the cut-off frequency in 𝐾ω times corresponds to the 

increase of each point of the abscissa of the frequency response of the 

filter in 𝐾ω times when the magnitude of the ordinate and the general 

type of frequency characteristic are unchanged. Then the impedance of 

any branch of the new filter 

𝑍(𝑗𝜔) = 𝑟 + 𝑗
𝜔

𝐾𝜔
𝐿 +

1

𝑗
𝜔
𝐾𝜔

𝐶
= 𝑟 + 𝑗𝜔

𝐿

𝐾𝜔
+

1

𝑗𝜔
𝐶
𝐾𝜔

.       (7.32) 

that is inductance and capacity of the filter should decrease in 𝐾𝜔times. 

Thus, the connection between the parameters of both filters has the 

form 

𝑟𝜔 = 𝑟;   𝐿𝜔 =
𝐿

𝐾𝜔
;    𝐶𝜔 =

𝐶

𝐾𝜔
. 

Let filter with a cut off frequency ω з is given. It is necessary to 

define the elements of the filter with the same cut off frequency ω𝑐, but 
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with the impedances in each branch in 𝐾𝑐 times greater, where 𝐾𝑐 – the 

scale factor of impedance: 

𝑍𝑐(𝑗𝜔) = 𝐾𝑐𝑟 + 𝑗𝐾𝑐𝜔𝐿 +
1

𝑗
𝜔
𝐾𝑐
𝐶
= 𝐾𝐶𝑟 + 𝑗𝜔𝐾𝑐𝐿 +

1

𝑗𝜔
𝐶
𝐾𝑐

, 

that is the impedance and inductance of the branch should increase in 𝐾𝑐 
times, and the capacitance decrease in 𝐾𝑐 times. Thus, the relationship 

between the parameters of both filters has the form: 

𝑟𝑐 = 𝐾𝑐𝑟; 𝐿𝑐 = 𝐾𝑐𝐿; 𝐶𝑐 =
𝐶

𝐾𝑐
. 

If in common case filter with cat off frequency ω з transform to  

filter with cat off frequency 𝐾ωω з and with impedances of each branch 

in 𝐾𝑐 times greater, then parameters of such filter are   

𝑟2 = 𝐾𝑐𝑟1; 𝐿2 =
𝐾𝑐
𝐾𝜔

𝐿1; 𝐶2 =
𝐶1
𝐾𝑐𝐾𝜔

,                   (7.33) 

where 𝑟1, 𝐿1, 𝐶1, 𝑟2, 𝐿2, 𝐶2 - the parameters of the first and second 

filters, respectively. 

At 

𝐾𝑐 =
1

𝜔𝑐
=
1

𝑟𝑙1
 

the cut off frequency of the converted filter 𝜔𝑐2 = 𝐾𝑐  𝜔с1 = 1 and the 

resistance of its load 𝑟𝑙2  =  𝐾𝑐  𝑟𝑙1 = 1.  

Such filter is called normalized. First, calculate for the normalized 

filter, get the value of the filter parameters, and then, through scale 

factors, pass to the actual values of the filter elements. 

 

Example 7.1.  

Find the value 𝐿1 and 𝐶2 for a single-link normalized (ω𝑐 = 1, 

𝑟𝑙 = 1) LPF of type "k". 

Solution.               

Select the load resistance 𝑟𝑙 equal to the nominal characteristic 

resistance 𝑅 =  𝑘: 
𝑟𝑙 =  𝑅 = 1 Ohm. 

Parameters and the filter 𝐿1 and 𝐶2 will be determined by the 

expressions (7.12): 

𝐿1𝑛 =
2𝑅

𝜔𝑐
 =

2 ∙ 1

1
 =  2H;   𝐶2𝑛 =

2

𝜔𝑐𝑅
 =  

2

1 ∙ 1
= 2F. 
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The diagram of the filter corresponds to Fig.7.6, b, where 
𝐿1 

2
= 1H;  𝐶2 =  2F. 

 

Example 7.2.  
Calculate the LPF according to the following data. 

𝑓с = 5 kHz;     𝑟𝑙 = 1 kΩ. 

Solution. 

Parameters of normalized LPF: 

𝜔𝑐𝑛 = 1;  𝑟𝑙𝑛 = 1. 

We find scale coefficients of frequency 𝐾ω and impedance 𝐾𝑐: 

𝐾𝜔 = 
𝜔𝑐
𝜔𝑐𝑛

 =  
2π ∙ 5 ∙ 103

1
=  3,14 ∙ 104; 

𝐾𝑐  =
𝑟𝑙
𝑟𝑙𝑛
 =

1000

1
= 103. 

In Example 7.1 the parameters of the normalized LPF were found: 

𝐿1𝑛 =  2H, 𝐶2𝑛 =  2F. 

Therefore, in this scheme, according to the formulas (7.33) we get 

𝐿1  =
𝐾𝐶
𝐾𝜔

𝐿1𝑛 = 
103

3.14 ∙ 104
∙ 2 =  63.6 ∙ 10−3 H; 

𝐶2  =  
1

𝐾𝑐𝐾𝜔
𝐶2𝑛  =

 1

103 ∙ 3.14 ∙ 104
∙ 2 =  0.0637 ∙ 10 −6F. 

Circuit of LPF is shown in fig. 7.15 (a – T-like, b – П-like).  

 

 
a     b 

Fig. 7.15 

 

Example 7.3.  
Calculate the LPF according to the following data: 

𝜔𝑐 =  3000
rad

s
 , 𝑅𝑛  =  100 Ohms, 𝑍𝑐(ω𝑐) =  0, 50 dB. 

at the frequency 2ω𝑐.  
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Solution. 

The characteristic impedance at the cut off frequency 𝑍𝑐(𝜔𝑐) = 0 

has T-like link of the filter (Fig. 7.7). Therefore, for the base normalized 

link, choose a T-like link for which 𝑍𝑐T𝑛 (1)  = 0. Determine the 

required number of links to provide the required attenuation in the band 

non-transmission. From formula (7.27) 

𝛼𝑛(2𝜔𝑐) =  2𝑛arch 2 ≥  
50

8.686
Nep, 

that is 

𝑛 ≥
𝛼𝑛(2𝜔𝑐)

2arch2
=

50  

8.686 ∙ 1.32
=  2.18. 

Take 𝑛 = 3. 

We find scale factors. For 𝐾𝑐 at 𝑅 = 1 we get 

𝐾𝑐 =
𝑟𝑙
𝑅
=
 100

1
= 100.                           (7.34) 

For 𝐾𝜔 by 𝜔𝑛 =  1 

𝐾𝜔 =
𝜔𝑐
𝜔𝑛

=
3000

1
= 3000.                       (7.35) 

Now we get the filter parameters according to formula (7.33) with 

the parameters of the base normalized filter (example 7.2) 𝐿1𝑛 =  2H, 

𝐶2𝑛 =  2F: 

𝐿1 =
𝐾𝑐
𝐾𝜔
 𝐿1𝑛 =

100

3000
∙ 2 = 66.6H;                  (7.36) 

𝐶2 =
 1

𝐾𝑐𝐾𝜔
𝐶2𝑛  =  

2

100 ∙ 3000
=  6.7 μF.            (7.37) 

The scheme of the filter is shown in Fig. 7.16 

 
Fig. 7.16 

 

The examined examples show the high efficiency of the 

normalization of the filters. 
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7.6 Frequency transformation 

 

Calculated formulas and graphs obtained for LPF can be used to 

calculate filters of another type by the method of reception, which is 

called transformation or frequency. The essence of this method is that 

the imaginary frequency 𝑗ω in the expressions for the LPF is replaced 

by a certain imaginary value T(𝑗𝛺)  =  𝑗T(𝛺), which is a function of 

another frequency. After such a change, the bandwidth on the 

characteristic of the LPF is converted into one or more other 

bandwidths, which corresponds to the characteristics of the new filter 

type. 

Thus, the task is to determine the desired function T(𝑗𝛺). The 

simplest frequency conversion has already been applied (see section 7.5) 

in the expression (7.32) when changing the frequency ω to 𝜔/𝐾𝜔.  

That is 

𝑗𝜔 =  𝑇(𝑗𝛺) = 𝑗𝑇(𝛺) = 𝑗𝑇(𝐾𝜔𝜔). 
 

In this case, the LPF with the cu off frequency ω was transformed 

into a low-pass filter with a cutoff frequency 𝛺𝑐  =  𝐾𝜔𝜔𝑐 . 
It should be noted that according to Euler's formulas, any frequency 

corresponds to two imaginary frequencies 𝑗𝜔 and −𝑗𝜔 on the complex 

plane. In terms of mathematics, positive and negative frequencies are 

equal. From the physical point of view, both values correspond to the 

concept of frequency oscillations. 

 

7.7. High-pass filters 

 

To obtain relations related to high pass filter, we use the method of 

frequency transformation. Let 

𝑗𝜔 = T(𝑗𝛺) =
1

𝑗𝛺
. 

Then the inductance impedance  

𝑗𝜔𝐿 =
1

𝑗𝛺
𝐿 =

1

𝑗𝛺
1
𝐿

=
1

𝑗𝛺𝐶e
 

becomes to impedance of the capacity, the value of which 
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𝐶e =
1

𝐿
. 

Capacity impedance 
1

 𝑗𝜔𝐶
=  

1

1
𝑗𝛺 𝐶

=  𝑗𝛺
1

𝐶
 =  𝑗𝛺 𝐿е 

becomes to impedance of the inductance, the value of which 

𝐿е =
1

𝐶
.   

The ratio (7.1) for the LPF bandwidth 

0 ≤  𝜔 ≤  𝜔𝑐 
becomes to relationship 

0 ≤
 1 

𝛺
≤
1

𝛺𝑐
 

or 

 𝛺 ≥ 𝛺𝑐 .                                                     (7.38) 
The relation (7.38) corresponds to the high pass filter. For 

normalized LPF with ω𝑐 = 1 we have HPF with  

𝛺𝑐 =
1

𝜔𝑐
,                                                  (7.39) 

that is also normalized by high pass filter. 

Consequently, for a normalized low-pass filter into high- pass filter 

it is necessary to replace the inductance of HPF to capacitance in the 

LPF, and the capacitance to inductance: 

𝐿ℎ =
 1

𝐶𝑙  
 ;      𝐶ℎ =

1

𝐿𝑙
 .                                         (7.40) 

That is, for example, for an T-like link, the inductance 
 𝐿1  

2
 must be 

replaced by the capacitance 
2

𝐿1
, and the capacitance 𝐶2 is replaced by the 

inductance 
1

𝐶2
 (Fig. 7.17). 

 
Fig.7.17 
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The cut off frequency Ω𝑐 for the high-frequencyfilter is found from 

the formula (7.10) for the replacement ωc of the LPF to 
1

Ωc
 by the 

expression (7.39), and 𝐿1 to 
1

𝐶
, C2 to 

1

𝐿
 on the expression (7.40): 

1

𝛺𝑐
=

1

√1
𝐶
1
𝐿

;  𝛺𝑐 =
1

2√𝐿𝐶
. 

 

Example 7.4.  

Performing a normalized LPF into LPF with a cutoff frequency fC = 

5 kHz  and resistance load rl = 100 Ohms. 

Solution. 

Parameters of normalized low-pass filter (example 7.1): 
1

2
𝐿1𝑛𝑙 = 1H;     𝐶2𝑛𝑙 = 2F. 

The normalized HPF will have the following parameters (7.40) 

𝐿1𝑛ℎ =
1

𝐶2𝑛𝑙
=
1

2
H;    𝐶2𝑛ℎ =

1

0.5𝐿1𝑛𝑙  
= 1F. 

The scale factors by 𝑅 = 1, ω𝑛 = 1 for the formulas (7.34) and 

(7.35) are equal to: 

𝐾𝑐 =
𝑟𝑙
𝑅
=
100

1
= 100;  𝐾𝜔 =

𝜔𝑐
𝜔𝑛

=
2π ∙ 5000

1
= 31,4 ∙ 103. 

Then for the desired filter for the expressions (7.36) and (7.37) we 

obtain: 

𝐿ℎ =
𝐾𝑐
𝐾𝜔

𝐿1𝑛ℎ =
1

31,4 ∙ 103
∙
1

2
= 1,59 mH. 

𝐶ℎ =
1

𝐾𝑐𝐾𝜔
𝐶2𝑛ℎ =

1

100 ∙ 31,4 ∙ 103
∙ 1 = 0,318 μF. 

The diagram of the filter is shown in Fig. 7.18. 

 

 
Fig. 7.18 
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Example 7.5.  

Convert the "m" type LPF (see Fig. 7.9, b) into the "m" type high-fi 

filter. 

Parameters of elements in longitudinal branches of the high-

frequency electric field are obtained by the formulas (7.40): 

𝐶ℎ =
1

𝐿𝑙
=

1

𝑚𝐿1
2

=
2

𝑚𝐿1
. 

By the formula (7.40) we find the parameters of the transverse 

branch: 

𝐿𝑙 =
1

𝐶ℎ
=

1

1 −𝑚2

4𝑚
𝐿1

=
4𝑚

(1 −𝑚2)𝐿1
. 

The diagram of the filter is shown in Fig. 7.19. 

 

 
Fig. 7.19 

7.8. Ваnd pass filter 

 

Let the transformation equation for bаnd pass filter have the next 

form by the transformation frequency method 

𝑗𝜔 = Т(𝑗𝛺) =
𝛺0
2 −𝛺2

𝑗𝛺П
,                               (7.41) 

where 𝛺0 – the geometric mean of the cut off frequence Ω𝑐1 and Ω𝑐2 of 

bandpass filter (BPF), and П – is the bandwidth of the BPF. 

𝛺0 = √𝛺𝑐1𝛺𝑐2;                                         (7.42) 

then 

П = 𝛺𝑐1 − 𝛺𝑐2.                                         (7.43) 

Let the output LPF have a normalized cut off frequency ω𝑐 = 1. 

Two imaginary frequencies correspond to the complex plane of this 

frequency 

𝑗𝜔 = 𝑗𝜔𝑐 = 𝑗 ∙ 1 = 𝑗;   𝑗ω = −jωc = −𝑗 ∙ 1 = −𝑗. (7.44) 
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Then, substituting the formulas (7.44) in (7.41), we obtain (at 

𝑗𝜔 = 𝑗) 

𝑗 =
𝛺0
2 −𝛺𝑐1

2

𝑗𝛺𝑐1П
 

or  

𝛺𝑐1
2 − П𝛺𝑐1 − 𝛺0

2 = 0. 
Hence  

(𝛺𝑐1)1,2 =
П

2
± √

П2

4
+ 𝛺0

2. 

Interest have only positive frequency. Therefore  

Ω𝑐1 =
П

2
+ √

П2

4
+ Ω0

2. 

At  

𝑗𝜔 = −𝑗, −𝑗 =
Ω0
2 − Ω𝑐2

2

𝑗Ω𝑐2П
 

or 

Ω𝑐2
2 + ПΩ𝑐2 −Ω0

2 = 0. 
Hence 

(𝛺𝑐2)1,2 = −
П

2
± √

П2

4
+ 𝛺0

2. 

Positive frequency 𝛺𝑐2 are defined are defined by expression  

𝛺𝑐2 = −
П

2
+ √

П2

4
+ 𝛺0

2. 

Now, using the transform (7.41), the соmplex impedance of the 

inductance  

𝑗𝜔𝐿 =
𝛺0
2 −𝛺2

𝑗𝛺П
𝐿 =

𝛺0
2𝐿

𝑗𝛺П
−
𝛺2𝐿

𝑗𝛺П
=

1

𝑗𝛺
П
𝛺0
2𝐿

+ 𝑗𝛺
𝐿

П
=

1

𝑗𝛺𝐶е
+ 𝑗𝛺𝐿е, 

where 

𝐿е =
𝐿

П
;  𝐶е =

П

𝛺0
2𝐿
.                                   (7.45) 
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That is, the inductance L is converted into a serial connection of 

equivalent inductance 𝐿е and equivalent capacitance 𝐶е. 
For complex conductance of capacity C we have 

𝑗𝜔𝐶 =
𝛺0
2 − 𝛺2

𝑗𝛺П
𝐶 =

𝛺0
2𝐶

𝑗𝛺П
−
𝛺2𝐶

𝑗𝛺П
=

1

𝑗𝛺
П
𝛺0
2𝐶

+ 𝑗𝛺
𝐶

П
=

1

𝑗𝛺𝐿е
+ 𝑗𝛺𝐶е, 

where 

𝐶е =
𝐶

П
;   𝐿е =

П

Ω0
2𝐶
.                   (7.46) 

That is, the capacitance C is converted into a parallel connection of 

inductance 𝐿е and capacitance 𝐶е. Thus, the inductance L is converted 

into a series oscillatory circuit, the capacitance C – in the parallel 

oscillatory circuit. 

Resonance frequency of the both circuits 

𝛺𝑟 =
1

√𝐿е𝐶е
=

1

√
𝐿
П ∙

П
𝛺0
2𝐿

=
1

√
П
𝛺0
2𝐶
∙
𝐶
П

= 𝛺0.          (7.47) 

For example, for a T-like link of the low-pass filter we obtain the 

corresponding values of the band pass filter SF branches parameters 

(Fig. 7.20, a, b) by the formulas (7.45) and (7.46): 

{
 
 

 
 𝐿1П =

𝐿1
П
=
𝐿1
2П

; 𝐶1П =
П

𝛺0
2𝐿1𝑙

=
2П

𝛺0
2𝐿1

; 

𝐿2П =
П

𝛺0
2𝐶2𝑙

=
П

𝛺0
2𝐶2

;   𝐶2П =
𝐶2𝑙
П
=
𝐶2
П
.

 

 

 
Fig. 7.20 

 

Example 7.6.  
Transform the normalized T-like LPF (Example 7.1) with the 

parameters 
1

2
𝐿1𝑛𝑙𝑝𝑓 = 1H, 𝐶2𝑛𝑙𝑝𝑓 = 2F in the SF with 𝑟𝑙 = 75 Ohm, 
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the bandwidth П = 8 ∙ 10 3rad/s and the resonant frequency 𝛺0 = 1.5 ∙
106 rad/s. 

Let’s find the parameters of the normalized SF by the formulas 

(7.45) and (7.46): 

𝐿1𝑛𝐶𝑓 =
𝐿1𝑙
П
=

1

8 ∙ 103
= 0,125 mH; 

𝐶1𝑛𝐶𝑓 =
П

Ω0
2𝐿1𝑙

=
8 ∙ 103

(1.5 ∙ 106)2 ∙ 1
= 3550 nF; 

𝐿2𝑛𝐶𝑓 =
П

Ω0
2𝐶2𝑙

=
8 ∙ 103

(1.5 ∙ 106)2 ∙ 2
= 0,0018 μF; 

𝐶2𝑛𝐶𝑓 =
𝐶2𝑙
П
=

2

8 ∙ 103
= 250 pF. 

Scale factor 𝐾𝑐 by 𝑅 = 1 with formula (7.34) is 

𝐾𝐶 =
𝑟𝑙
𝑅
=
75

1
= 75. 

Then for the wanted SF 

𝐿1𝐶𝑓 = 𝐾𝐶𝐿1𝑛𝐶𝑓 = 75 ∙ 0,125 ∙ 10
−3 = 9,375 mH; 

𝐶1𝐶𝑓 =
1

𝐾𝐶
𝐶1𝑛𝐶𝑓 =

1

75
∙ 3550 ∙ 10−12 = 47,3 pF; 

𝐿2𝐶𝑓 = 𝐾𝐶𝐿2𝑛𝐶𝑓 = 75 ∙ 0,0018 ∙ 10
−6 = 0,135 μH; 

𝐶2𝐶𝑓 =
1

𝐾𝐶
𝐶2𝑛𝐶𝑓 =

1

75
∙ 250 ∙ 10−12 = 3,33 pF. 

 

 

7.9.Rejection filter RF 

 

Let’s by the transformation method have the form of the 

transformation equation is 

𝑗𝜔 = Т(𝑗𝛺) =
𝑗𝛺П

𝛺0
2 − 𝛺2

,                                  (7.48) 

where 𝛺0  is determined by the formula (7.42), П – pass band оf 

rejection filter (RF), is determined by the formula (7.43). 

Analogically with the band pass filter, we solve the equation 

𝑗 =
𝑗𝛺𝑐1П

𝛺0
2 −𝛺𝑐1

2  

or 
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𝛺𝑐1
2 + П𝛺𝑐1 − 𝛺0

2 = 0. 
From here 

(𝛺𝑐1)1,2 = −
П

2
± √

П2

4
+ 𝛺0

2. 

For positive frequencies 

𝛺𝑐1 = −
П

2
+ √

П2

4
+ 𝛺0

2. 

Let's solve the equation 

−𝑗 =
𝑗𝛺𝑐2П

𝛺0
2 − 𝛺𝑐2

2  

or 

𝛺𝑐2
2 − П𝛺𝑐1 − 𝛺0

2 = 0. 
Hence 

(𝛺𝑐2)1,2 =
П

2
±√

П2

4
+ 𝛺0

2 

For positive frequencies 

𝛺𝑐1 =
П

2
+ √

П2

4
+ 𝛺0

2 

That is in comparison with the band pass filter BPF, the boundary 

frequencies changed places. 

Now, using the transformation (7.48), we obtain the complex 

conductivity of the inductor: 

1

𝑗𝜔𝐿
=
𝛺0
2 − 𝛺2

𝑗𝛺П𝐿
=

𝛺0
2

𝑗𝛺П𝐿
−

𝛺2

𝑗𝛺П𝐿
= 

(7.49) 
1

𝑗𝛺
П𝐿
𝛺0
2

+ 𝑗𝛺
1

П𝐿
=

1

𝑗𝛺𝐿е
+ 𝑗𝛺𝐶е, 

where 

𝐶е =
1

П𝐿
;   𝐿е =

П𝐿

𝛺0
2 . 
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That is, inductance 𝐿 is converted into a parallel connection of 

inductance 𝐿е and capacitance 𝐶е.  
For complex resistance of capacity 

1

𝑗𝜔𝐶
=
𝛺0
2 − 𝛺2

𝑗𝛺П𝐶
=

𝛺0
2

𝑗𝛺П𝐶
−

𝛺2

𝑗𝛺П𝐶
= 

 (7.50) 
1

𝑗𝛺
П𝐶
𝛺0
2

+ 𝑗𝛺
1

П𝐶
=

1

𝑗𝛺𝐶е
+ 𝑗𝛺𝐿е, 

where 

𝐿е =
1

П𝐶
;   𝐶е =

П𝐶

𝛺0
2 , 

that is, the capacitance 𝐶 is converted into a series connection and 

іinductance 𝐿е and capacitance 𝐶е.   
Thus, the inductance is converted into a parallel oscillatory circuit, 

and the capacitance 𝐶 is a series oscillatory circuit. The resonance 

frequency of both circuits coincides with the result (7.47) for the band 

filter BPF. 

For example, for a T-like link of a low – pass filter, we obtain the 

corresponding values of the parameters of the branches of the rejection 

filter RF (Fig. 7.21) by the formulas (7.49) and (7.50): 

{
 
 

 
 𝐿1𝑐𝑓 =

1

П𝐿1𝑙
=

2

П𝐿1𝑙
; 𝐶1𝑐𝑓 =

П𝐿1𝑙

𝛺0
2 =

П𝐿1

2𝛺0
2 ; 

𝐿2𝑐𝑓 =
1

П𝐶2𝑙
=

1

П𝐶2
;  𝐶2𝑐𝑓 =

П𝐶2𝑙

𝛺0
2 =

П𝐶2

𝛺0
2 .

 

 

 
Fig.7.21 

 

In table. 7.2 the correspondence between the elements of the LPF, 

HF, SF, and ZF, obtained by the method of frequency transformation, is 

indicated. 
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Table 7.2 

LBF HBF BF RF 

 
   

  

 
 

 

 

7.10. Elements of filters synthesis 

 

Stages of filters synthesis for LPF. Under the modern theory of 

filters, which involves the approximation of the frequency 

characteristics by the most suitable rational functions, it is possible to 

isоlate the following steps to the synthesis of the thesis for the LPF. 

1. The technical requirements for FFL LPF are formulated. The 

ideal frequency response at the cut off frequency is shown in Fig. 7.22 

and is written as follows: 

 

𝐾𝑝(𝜔) = {
1, 0 ≤ 𝜔 ≤ 𝜔𝑐;
0, 𝜔 ≥ 𝜔𝑐 .        

 

 
Here 𝐾𝑝(𝜔) is the ratio of power 

transmission. 

Fig.7.22 

In this case no requirements for phase-frequency characteristics 

(FHC) is not put. That is such a synthesis is a synthesis for a given AFC. 

It is clear that the idealized frequency response for fig. 7.22 

physically can not be realized and therefore the synthesis continues. 

2. The idealized AFC for Fig. 7.22 is approximated by such a 

function, which follows it will be possible to realize in the physical 

circuit. 

3. For the approximated frequency response, find the transfer 

function 𝐾(𝑝) – the dependence of the transmission coefficient on the 

operator 𝑝 = 𝜎 + 𝑗𝜔 on the complex plane. In comparison with the 
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complex function of the circuit 𝐾(𝑗𝜔) as an argument is not the 

imaginary frequency jω, but the complex operator 𝑝 = 𝜎 + 𝑗𝜔, ie 

simply imaginary frequency jω, is replaced by the operator 𝑝. 

4. Find the coordinates of the zeros and poles of the transfer 

function 𝐾(𝑝) and build the principle filter scheme for them. 

Approximation by the Butterworth filter. The amplitude - frequency 

response for fig, 7.22 can be approximated by a filter with a maximum 

flat characteristic – a Butterworth filter. For him, the transmission factor 

of power 

𝐾𝑝(𝜔𝑛) =
1

1 + 𝜔𝑛
2𝑛 ,                                     (7.51) 

where 𝜔𝑛 =
𝜔

𝜔𝑐
 – normalized frequency, n- the order of the filter. 

In fig. 7.23 shows AFC of Butterworth filter is shown at 𝑛 = 1 and 

𝑛 = 5. It is clear, that n is more, the more precisely the AFC is 

approximated for fig.7.22.  

At the cut off frequency 

(ω𝑛 = 1), the transmission ratio of 

power 𝐾𝑝 = 0,5.To estimate the 

signal attenuation, take a decimal 

logarithm from, i.e.   

𝛼(𝜔) = 101g𝐾𝑝(𝜔н) = 101g0.5 =

−3.01dB. 

This value don’t depends on the 

order of filter.  

Fig.7.23   

In the bandwidth of the LPF, when ω𝑛 ≫ 1, we obtain from the 

formula (7.51) 

𝐾𝑝(𝜔𝑛) ≈ 𝜔𝑛
−2𝑛. 

Attenuation 

𝛼(𝜔) = 10 lg𝐾𝑝(𝜔𝑛) = −20𝑛 lg 𝜔𝑛dB. 

The rate of attenuation in the band of non-transmission is 

𝛼(𝜔) = −20𝑛 lg2 = −6𝑛
dB

octave
. 

That is, the increase in frequency twice gives an attenuation of 

6 dB/octave. Octave is an interval of frequencies, the boundaries of 

which differ two time. 
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Determine the transfer function of the Butterworth filter. 

Replace in the formula (7.51) 𝜔𝑛 with 𝑗𝜔𝑛. If the transmission 

factor of power is 

𝐾𝑝(𝜔𝑛) = 𝐾(𝑗𝜔𝑛) ∙ 𝐾(−𝑗𝜔𝑛), 

where 𝐾(𝑗𝜔𝑛) =
�̇�2

�̇�1
 - the voltage transfer coefficient of two-pole, then 

the transfer function of the power 𝐾𝑝(𝜔𝑛) is a even and real number, 

that is, it does not take into account the phase proportions when the 

signal passes through the four-pole. Then, by the expression (7.51) 

𝐾𝑝(𝑗𝜔𝑛) =
1

1 + (𝑗𝜔𝑛)
2𝑛
=

1

1 + (−1)𝑛(𝜔𝑛)
2𝑛

 

Now propagate the action of function 𝐾𝑝(𝑗ω𝑛) from the imaginary 

axis to the entire plane of complex frequencies. For this, replace 𝑗𝜔𝑛 

with 𝑝𝑛 = 𝜎 + 𝑗𝜔𝑛. Get it 

𝐾𝑝(𝑝𝑛) =
1

1 + (−1)𝑛𝑝𝑛
2𝑛. 

Characteristic equation 

1 + (−1)𝑛𝑝𝑛
2𝑛 = 0      (7.52) 

gives 2n poles on compex plane. 

Now transfer function for Butterworth filter is written as 

𝐾(𝑝𝑛) =
1

(𝑝𝑛 − 𝑝𝑛1)(𝑝𝑛 − 𝑝𝑛2)… (𝑝𝑛 − 𝑝𝑛2𝑛)
.       (7.53) 

At 𝑛 = 1 

1 + (−1)1𝑝𝑛
2 = 0, 1 − 𝑝𝑛

2 = 0, 𝑝𝑛
2 = 1. 

Hence the roots 

𝑝𝑛1 = 1, 𝑝𝑛2 = −1. 

In fig. 7.24,a the location of these roots in the complex plane are 

shown. 

                    a                        b                         c 

 
Fig.7.24 
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At 𝑛 = 2 

1 + (−1)2𝑝𝑛
4 = 0, 𝑝𝑛

4 = −1. 

Hence the roots 

𝑝𝑛
2 = ±√−1 = ±𝑗 = ±𝑒

𝑗
𝜋

2;  𝑝𝑛 = ±√±𝑒
𝑗
𝜋

2; 

𝑝𝑛1 = +
√+𝑒𝑗

𝜋

2 = 𝑒𝑗
𝜋

4; 

𝑝𝑛2 = +
√−𝑒𝑗

𝜋

2 = +√−𝑒
𝑗(
𝜋

2
+𝜋)

= +√𝑒𝑗
3𝜋

2 = 𝑒𝑗
3𝜋

4 ; 

𝑝𝑛3 = −
√𝑒𝑗

𝜋

2 = −𝑒𝑗
𝜋

4 = 𝑒
𝑗(
𝜋

4
+𝜋)

= 𝑒𝑗
5𝜋

4 ; 

𝑝𝑛4 = −
√−𝑒𝑗

𝜋

2 = −𝑒𝑗
3𝜋

4 = 𝑒
𝑗(
3𝜋

4
+𝜋)

= 𝑒𝑗
7𝜋

4 . 

In fig. 7.24,b the location of these roots in the complex plane is 

shown. 

At 𝑛 = 3 

1 + (−1)3𝑝𝑛
6 = 1 − 𝑝𝑛

6 = 0, 𝑝𝑛
6 = −1. 

Hence the roots 

𝑝𝑛
3 = ±√1,  𝑝𝑛

3 = 1,  𝑝𝑛
3 = −1 = 𝑗2 = 𝑒𝑗2

𝜋

2 = 𝑒𝑗𝜋; 

𝑝𝑛1 = 1; 

𝑝𝑛2 = √−1
3

= √𝑗2
3

= √𝑒𝑗2
𝜋

2

3

= √𝑒𝑗𝜋
3

= 𝑒𝑗
𝜋

3; 

𝑝𝑛3 = √1
3

= √𝑗4
3

= √𝑒𝑗4
𝜋

2

3

= √𝑒𝑗2𝜋
3

= 𝑒𝑗
2𝜋

3 ; 

𝑝𝑛4 = √−1
3

= −1; 

𝑝𝑛5 = √1
3

= √𝑗8
3

= √𝑒𝑗8
𝜋

2

3

= √𝑒𝑗4𝜋
3

= 𝑒𝑗
4𝜋

3 ; 

𝑝𝑛6 = √−1
3

= √𝑗10
3

= √𝑒𝑗10
𝜋

2

3

= √𝑒𝑗5𝜋
3

= 𝑒𝑗
5𝜋

3 . 

In fig. 7.24,c the location of these roots in the complex plane is 

shown. 

From Fig. 7.24, it is clear, that all poles are located at identical 

angles to each other, equal 
𝜋

𝑛
. If n – n odd, then 𝑝𝑛1 = 1, if n – twin, 

then 𝑝𝑛1 = 𝑒
𝑗
𝜋

𝑛. 
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From Fig. 7.24 it is seen, that the picture of the location of the poles 

has quadrant symmetry, that is, with respect to the vertical axis, passing 

through the center, the picture is symmetric. Therefore, for the synthesis 

of a circuіt, only those poles, located in the left on half-plane are taken 

(the roots of the characteristic equation, corresponding to these poles, 

have a negative real part,іt is corresponding to the attenuation of 

processes and the presence in the implemented circle, of the active 

resistance). Mirror the image in the right half-plane is not taken into 

account (Fig. 7.24). 

Approximation by the Chebyshev filter. Amplitude-frequency 

characteristic in Fig. 7.22 can be approximated with Chebyshev 

approximation – a Chebyshev filter.To do this, the transmission ratio is 

power 

                            𝐾𝑝(𝜔𝑛) =
1

1+𝜀2T𝑛
2 (𝜔𝑛)

,                                   (7.54) 

where 𝜀 < 1 – the coefficient of non-uniformity of the characteristic in 

the bandwidth; T𝑛
2(𝜔𝑛) – Chebyshev’s polynomial of the n-order, which 

is determined by the formula 

T𝑛(𝑥) = cos(𝑛 arccos 𝑥).   (7.55) 

This polynomial has an important property: be −1 <  𝑥 <  1   
value of T𝑛(𝑥) is the list deviates (comparatively with other 

polynomials) from zero. 

At |𝑥| ≫ 1 values T𝑛(𝑥) increase sharply. That is, the frequency 

characteristic for fig. 7.22 with a crestal peak (Fig. 7.25) is realized. 

The function T𝑛(𝑥) is determined from the recurrence ratio   

T𝑛(𝑥) = 2𝑥T𝑛−1(𝑥) − T𝑛−2(𝑥)    (7.56) 

for 𝑛 = 0    T0(𝑥) = cos 0 = 1, 

for 𝑛 = 1  T1(𝑥) = cos(arccos𝑥) = 𝑥. 

This follows from the expression (7.53). 

 
Fig.7.25 
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Let 𝑛 = 0, then by the formula (7.54) 

𝐾𝑝(𝜔𝑛) =
1

1 + 𝜀2
. 

Let 𝑛 = 1, then by the formula (7.54) 

𝐾𝑝(𝜔𝑛) =
1

1 + 𝜀2𝜔𝑛
2. 

In the bandwidth 0 ≤ 𝜔𝑛 ≤ 1, that is, 𝐾𝑝(𝜔𝑛) in the bandwidth 

range of LPF varies from 1 to 
1

1+𝜀2
.     

Let it be 𝑛 = 2, then by the formula (7.56) 

T2(𝑥) = 2𝑥T1(𝑥) − T0(𝑥) = 2𝑥
2 − 1. 

Then according the formula (7.54) we get 

𝐾𝑝(𝜔𝑛) =
1

1 + 𝜀2𝑇2
2(𝜔𝑛)

=
1

1 + 𝜀2(2𝜔𝑛
2 − 1)2

. 

Let it be 𝑛 = 3, then by the formula (7.56) 

T3(𝑥) = 2𝑥T2(𝑥) − T1(𝑥) = 2𝑥(2𝑥
2 − 1) − 𝑥 = 

= 4𝑥3 − 2𝑥 − 𝑥 = 4𝑥3 − 3𝑥. 

Now, by the formula (7.54)  

𝐾𝑝(𝜔𝑛) =
1

1 + 𝜀2T3
2(𝜔𝑛)

=
1

1 + 𝜀2(4𝜔𝑛
3 − 3𝜔𝑛)

2
. 

У смузі пропускання 𝐾𝑝(ω𝑛) змінюється у межах від 1 до 
1

1+𝜀2
 

etc.  

That is, in the general case in the bandwidth the value 𝐾𝑝(ω𝑛) 

ranges from 1 to 
1

1+𝜀2
, if 𝜔𝑛 ≫ 1, that is, outside the bandwidth, the 

value 𝐾𝑝(ω𝑛) alls sharply. 

Fig. 7.26 shows characteristic graphics of the frequency 

characteristics of the transmission coefficient for the Chebyshev filter at 

𝑛 = 2 and 𝑛 = 3. 

 
Fig. 7.26 
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It is seen that the magnitude of the ripples in the bandwidth 

depends on ε (increases with growth ε). To obtain the desired frequency 

characteristic, select a pair of parameters ε and n. 

Determine the transfer function of the Chebyshev filter. Replace in 

the formula (7.54) 𝜔𝑛 on 𝑝𝑛 = 𝜎 + 𝑗𝜔𝑛.   

𝐾𝑝(𝑝𝑛) =
1

1 + ε2T𝑛
2(𝑝𝑛)

. 

It’s characteristic equation 

1 + 𝜀2T𝑛
2(𝑝𝑛) = 0.   (7.57) 

The solution of the equation (7.57) is quite complex. The procedure 

for determining the roots of the equation (7.57) is as follows: 

1) calculate the auxiliary parameter 

𝑎 =
1

𝑛
arch

1

ε
=
1

𝑛
ln(

1

ε
+√

1

𝜀2
+ 1) ; 

2) find the poles of the Butterworth filter in the same order, 

3) abscissa each pole Chebyshev filter is found by multiplying the 

corresponding sha іnto Butterworth filter abscissa, ordinate each pole 

Chebyshev filter – as a product of the same cha into ordinate 

corresponding to each pole filter Botteworth, 

4) using the coordinates pole Chebyshev filter, record Chebyshev 

filter transfer function similar ratio (7.53). 

Implementation of filters. Consider the realization of the LPF. The 

order of  the LPF is determined by the number of poles of the transfer 

function of the filter. 

Consider the first-order filter. It is implemented in the first-order 

circuit in the form of a RC-four-pole (Fig. 7.27). For him 

𝐾(𝑝) =
𝑈𝑜𝑢𝑡(𝑝)

𝑈𝑖𝑛(𝑝)
=

1
𝑝𝐶

𝑅 +
1
𝑝𝐶

=
1

1 + 𝑝𝑅𝐶
.              (7.58) 

 

 
Fig. 7.27 
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Characteristic equation 

1 + 𝑝𝑅𝐶 = 0. 

Its root 

𝑝1 = −
1

𝑅𝐶
= −

1

τ
, 

where 𝜏 = 𝑅𝐶 – is the time of the filter.  

If specified 𝜏 = 𝑅𝐶, you can arbitrarily set R or C. 

Consider the second-order filter. It is implemented by the second 

order circuit in the form of a Г-similar two-port (Fig.7.28). 

For him 

𝐾(𝑝) =
𝑈𝑜𝑢𝑡(𝑝)

𝑈𝑖𝑛(𝑝)
=

𝑅 ∙
1
𝑝𝐶

𝑅 +
1
𝑝𝐶

𝑝𝐿 +
𝑅 ∙

1
𝑝𝐶

𝑅 +
1
𝑝𝐶

=

𝑅
1 + 𝑝𝑅𝐶

𝑝𝐿 +
𝑅

1 + 𝑝𝑅𝐶

= 

=

𝑅
1 + 𝑝𝑅𝐶

𝑝𝐿 + 𝑝2𝐿𝐶𝑅 + 𝑅
1 + 𝑝𝑅𝐶

=
𝑅

𝑝𝐿 + 𝑝2𝐿𝐶𝑅 + 𝑅
= 

(7.59) 

=
𝑅

𝐿𝐶𝑅
∙

1

𝑝2 +
1
𝑅𝐶 𝑝 +

1
𝐿𝐶

=
1

𝐿𝐶
∙

1

𝑝2 +
1
𝑅𝐶 𝑝 +

1
𝐿𝐶

= 

=
𝜔0
2

𝑝2 + 2𝛼𝑝 + 𝜔0
2 , 

where  

𝜔0 =
1

√𝐿𝐶
,  𝛼 =

1

2𝑅𝐶
. 

 

 
Fig. 7.28 
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Characteristic equation 

𝑝2 + 2𝛼𝑝 + 𝜔0
2 = 0. 

Its roots 

𝑝1,2 = −𝛼 ± 𝑗√𝜔0
2 − 𝛼2. 

These roots can be both real and complex-conjugated. 

In the general case, the filter of any order is formed by a cascade 

connection of separate filters of the first and second order with the 

elements of the decoupling between the links (fig. 7.29). 

 

 
Fig. 7.29 

 

In Fig. 7.29 𝐾1, 𝐾2,…, 𝐾𝑁 – the coefficients of the transfer of links 

of the first and second order. 

As a result, the transmission coefficient of the filter for rice. 6.29 

𝐾(𝑝) = 𝐾1(𝑝) ∙ 𝐾2(𝑝) ∙ … ∙ 𝐾𝑁(𝑝). 
 

Example 6.7.  

It is necessary to realize the LPF with the maximum flat 

characteristic (Butterworth filter) of the third order with the cu toff 

frequency 𝜔𝑐 = 10
5 1

c
 . The load of the filter is resistor 𝑅 = 0,5 kOhm. 

Solution.  

Acc 𝑐 ording to the stages of synthesis: the requirements for the 

AFC of the LPF are stated in the task. Approximation of the AFC of the 

LPF on the condition of the Butterworth filter task. We record the 

transfer function of the third order filter. In general, it is recorded as 

follows 

𝐾(𝑝𝑛) =
1

(𝑝𝑛 − 𝑝𝑛1)(𝑝𝑛 − 𝑝𝑛2)… (𝑝𝑛 − 𝑝𝑛2𝑛)
. 

Define the coordinates of the poles of the transfer function. From 

Fig. 7.24,c for 𝑛 = 3 it is evident that they are e poles 3.4.5, located in 

the left half-plane, that is, 
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𝑝𝑛3 = 𝑒
𝑗
2𝜋
3 ,   𝑝𝑛4 = −1,   𝑝𝑛5 = 𝑒

𝑗
4𝜋
3 . 

We renumber poles in order: 

𝑝𝑛1 = cos
2𝜋

3
+ 𝑗sin

2𝜋

3
= −0,5 + 𝑗0,866; 

𝑝𝑛2 = cos
4𝜋

3
+ 𝑗sin

4𝜋

3
= −0,5 − 𝑗0,866; 

𝑝𝑛3 = −1. 

Previously, a replacement was made 𝑗ω on 𝑝 and 𝑗𝜔𝑛 → 𝑝𝑛. 

If 𝜔𝑛 =
𝜔

𝜔𝑐
, then 

𝑗𝜔

𝜔𝑐
= 𝑗𝜔𝑛 =

𝑝

𝜔𝑐
= 𝑝𝑛. 

From here 

𝑝 = 𝑝𝑛 ∙ 𝜔𝑐. 
Turning now from the normalized variable 𝑝𝑛 to a real complex 

frequency, we get 

𝑝1,2 = 𝑝𝑛1 ∙ ω𝑐 = 10
5 ∙ (−0,5 ± 𝑗0,866), 𝑝3 = 𝑝𝑛3 ∙ 𝜔𝑐 = −10

5. 

According to Fig. 7.29, the scheme of the third order filter can be 

constructed in the form of a cascade connection of the first order link 

with the pole 𝑝3 and the second order links with the poles 𝑝1,2 and the 

male solvers (Fig. 7.30). 

 

 
Fig.6.30 

 

As а link of the first order choose a link according to the scheme in 

Fig. 7.27 than transfer coefficient by equation (7.58) 

𝐾(𝑝) =
1

1 + 𝑝𝜏
, 

where τ = 𝑅𝐶.  

Frequency response is replaced 𝑝 by 𝑗𝜔: 

𝐾(𝑗𝜔) = 𝐾(𝜔)𝑒𝑗𝜑(𝜔) =
1

1 + 𝑗𝜔𝜏
. 

Here 

𝐾(𝜔) =
1

√1 + (𝜔𝜏)2
. 
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At the cutoff frequency, the transmittance module in voltage 

decreases by 1/√2 times. That is with ω = ω𝑐 
1

√1 + (𝜔𝜏)2
=
1

√2
, 

hence 

1 + (𝜔𝜏)2 = 2; 𝜔𝑐 =
1

𝜏
; τ = 𝑅𝐶 =

1

𝜔𝑐
. 

Choose arbitrarily 𝐶 = 10 nF. Then 

𝑅 =
𝜔з
𝐶
=

1

105 ∙ 10 ∙ 10−9
= 1000 Ω=1 kΩ. 

For a link of the second order, choose a link according to the 

scheme in Fig. 6.28. the role of the resistor R performs in this case the 

load impedance 𝑅𝑛. Transfer coefficient according to the formula (7.59) 

𝐾(𝑝) =
𝜔0
2

𝑝2 + 2𝛼𝑝 + 𝜔0
2 =

𝜔0
2

(𝑝 − 𝑝1)(𝑝 − 𝑝2)
. 

If 

𝑝1,2 = −𝛼 ± 𝑗√𝜔0
2 − 𝛼2 = 105 ∙ (−0,5 ± 𝑗0,866), 

then 

𝛼 =
1

2𝑅н𝐶
= 0,5 ∙ 105, 

hence 

𝐶 =
1

2𝑅н ∙ 0,5 ∙ 10
5
=

1

2 ∙ 0,5 ∙ 103 ∙ 0,5 ∙ 105
= 0,02μF. 

Now, taking the resonant frequency of the sеrіes oscillatory circuit 

in the diagram of fig.7.28 

ω0 =
1

√𝐿𝐶
= ω𝑐, 

get it 

𝐿 =
1

ω3
2𝐶
=

1

(105)2 ∙ 0,02 ∙ 10−6
= 5 ∙ 10−3 = 5 mH. 

The schematic diagram of the synthesized LPF is shown in fig. 

7.31. 
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Fig. 6.31 

As a soldering device, emitter or loop repeaters are usually used. 

 

Example 6.8.  

It is necessary to implement the Chebyshev second-order low-pass 

filter with a cut-off frequency 𝜔𝑐 = 10
5 1/s with a load 𝑅𝑙 = 1 kΩ an 

irregularity coefficient ε = 1. 

Solution.  

According to the synthesis stages, the requirements for the 

amplitude-frequency characteristic (AFC) of the LPF under the 

conditions of the problem are carried out by a Chebyshev filter. We 

write the transfer function of the Chebyshev filter of the second order 

with the parameter ε = 1. In the general form 

𝐾(𝑝н) =
1

(𝑝н − 𝑝н1)(𝑝н − 𝑝н2)
. 

Determine the coordinates of the poles of the transfer function. We 

calculate the auxiliary factor 

𝑎 =
1

𝑛
ln(

1

ε
+√

1

𝜀2
+ 1) =

1

2
ln(

1

1
+√

1

12
+ 1) = 0,4407. 

We calculate the poles of the second-order Butterworth LPFs. From 

Fig. 7.24,б  it is evident that they have poles 2, 3 (in the left half plane), 

that is, 

𝑝𝑛2 = 𝑒
𝑗
3𝜋
4 ; 𝑝𝑛3 = 𝑒

𝑗
5𝜋
4 . 

Number the poles in order 

𝑝𝑛1 = cos
3𝜋

4
+ 𝑗sin

3𝜋

4
= −0,707 + 𝑗0,707; 

𝑝𝑛2 = cos
5π

4
+ 𝑗sin

5π

4
= −0,707 − 𝑗0,707. 

Now define the abscissa (bonus of the abscissa of the Battewortht 

filter on the sh a and ordinate - on the ch a). From the tables we have: 
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sh 𝑎 = sh 0,4407 =
𝑒0,4407 − 𝑒−0,4407

2
= 0,4551; 

ch 𝑎 = ch 0,4407 =
𝑒0,4407 + 𝑒−0,4407

2
= 1,0987. 

Now the abscissas of the poles of the Chebyshev filter 

Re[𝑝𝑛1,2
′ ] = Re[𝑝𝑛1,2] ∙ sh 𝑎 = (−0,707) ∙ 0,4551 = −0,322; 

Ordinates of the poles of Chebyshev's filter 

Im[𝑝𝑛1,2
′ ] = Im[𝑝𝑛1,2] ∙ ch 𝑎 = (±𝑗0,707) ∙ 1,0987 = ±𝑗0,777. 

As a result, the poles of the Chebyshev filter of the second order at 

𝜀 = 1 are gaining shape 

𝑝𝑛1,2
′ = −0,322 ± 𝑗0,777. 

We move from the normalized variable 𝑝н to the real complex 

frequency 

𝑝1,2
′ = 𝑝𝑛1,2

′ ∙ ωc = 10
5 ∙ (−0,322 ± 𝑗0,777). 

For the link of the second order we select the filter according to the 

scheme of fіg. 7.28. The load is resistance 𝑅𝑙, The coefficient of 

transmission of the filter by the formula (7.59) іs 

𝐾(𝑝) =
𝜔0
2

𝑝2 + 2𝛼𝑝 + 𝜔0
2 =

𝜔0
2

(𝑝 − 𝑝1)(𝑝 − 𝑝2)
. 

If   

𝑝1,2 = −𝛼 ± 𝑗√𝜔0
2 − 𝛼2 = 105 ∙ (−0,322 ± 𝑗0,777), 

then 

𝛼 =
1

2𝑅н𝐶
= 0,322 ∙ 105, 

where from 

𝐶 =
1

2𝑅𝑙 ∙ 0,322 ∙ 10
5
=

1

2 ∙ 1000 ∙ 0,322 ∙ 105
= 

= 15,53 ∙ 10−9 = 15,53nF. 
Equate the imaginary parts of the poles 

√𝜔0
2 − 𝛼2 = 0,777 ∙ 105. 

From here 

𝜔0
2 − 𝛼2 = 0,6037 ∙ 1010; 

 

𝜔0
2 = 0,6037 ∙ 1010 + 𝛼2 = 
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= 0,6037 ∙ 1010 + (0,322 ∙ 105)2 = 0,7073 ∙ 1010 
If 

𝜔0 =
1

√𝐿𝐶
, 

then 

𝐿 =
1

𝜔0
2𝐶

=
1

0,7073 ∙ 1010 ∙ 15,53 ∙ 10−9
= 9,1 ∙ 10−3 = 9,1mH. 

The schematic diagram of the synthesized LPF is shown in fig. 7.32 

 

 
Fig. 6.32 

 

Methodical instructions 

 

When studying the theory of filters it is necessary to use 

information about the characteristic parameters of the four-pole. To 

study the material of the section ''Electric filters'' is necessary on the 

example of the LPF. By the method of frequency transformation, 

expressions can be obtained for the remaining types of filters: the upper 

frequencies, the band and the barriers. You must understand the 

difference between ''k'' and''m'' filters, as well as the benefits of ''m'' 

filters over ''k'' filters. 

Synthesis of filters is carried out according to modern theory. Use 

approximation for Butterworth and Chebyshev. The approximation is 

given only by the amplitude-frequency characteristics. Filters are 

implemented on the basis of RLC-circuіt of the first and second order. 

 

Literatura: [1 - 4] 

                         

Questions for self-examination 

 

1. How do I distinguish filters by bandwidth location? 
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2. What are your relations for the coefficient of attenuation and the 

phase coefficient in the bandwidth and non-transmissibility for LPF? 

3. How do filters like ''m'' get from filters like ''k''? 

4. What is the content of the operation of the normalization of 

resistance and frequency? 

5. With what correlations for frequency it is possible to transform 

the LPF into high-frequency, SF, and ZF? 

6. Output the stages of the LPF synthesis. 

7. What are the approximations of the frequency characteristics of 

the LPF to you? 

8. What is the content of the Butterworth filter approximation and 

the Chebyshev filter? 

9. Describe the implementation of synthesized filters. 
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8. Circles with distributed parameters 

 

8.1. Definition and equation of a long line 

 

Circuits with distributed parameters (DPC) are idealized electric 

circuits, whose geometric dimensions exceed the wave length of 

transmitting electromagnetic oscillations. They differ from circles with 

lumped parameters so that the values of currents and voltage within the 

boundaries of the selected sections of the DPC do not remain 

unchanged, but change at the same time point from the intersection to 

the intersection. 

Depending on the number of coordinate along which the current 

and voltage vary, one-dimensional, two-dimensional and three-

dimensional DPC are distinguished. We will consider one-dimensional 

DPC, which are called long lines (LL), for example: communication 

lines, power lines. 

A long line can be represented in the form of a set of continuously 

connected infinitesimal elements of length 𝑑𝑥, each of which has its 

resistance 𝑅1𝑑𝑥, inductance 𝐿1𝑑𝑥, conductance 𝐺1𝑑𝑥 and capacitance 

𝐶1𝑑𝑥 (fig.7.1). Resistance 𝑅1, inductance 𝐿1, conductance 𝐺1, 

capacitance 𝐶1 are the chassis parameters of LL per unit length. 1 

If, on all sections LL 𝑅1 = constant, 𝐿1 = constant, 𝐺1 =
constant, 𝐶1 =  constant ie do not depend on coordinates, then LL is 

homogeneous or regular. 

If 𝑅1 = 0, 𝐺1 = 0 that is, LL consists only of inductance 𝐿1 and 

capacitance 𝐶1, then it is called a loss free line (for example, power lines 

are modeled LL without losses). 

If 𝐿1 = 0, 𝐺1 = 0, then the resulting line 𝑅1𝐶1 is used to simulate 

passive elements (film and diffusion resistors, capacitors, connecting 

conductors) of integrated microcircuits. 

Parameters 𝑅1, 𝐿1, 𝐺1, 𝐶1are called primary parameters LL. 

Consider the equation of LL. Let x - the distance from the 

beginning of the LL to the element dx, i, u – instantaneous values of 

current and voltage at the beginning of the element dx 

The rate of change of current and voltage along the length of the 

line, obviously, can be written in the form 
𝜕𝑖

𝜕𝑥
  and  

𝜕𝑢

𝜕𝑥
 . Then the current 
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and voltage at the end of the element will be equal respectively 𝑖 +
𝜕𝑖

𝜕𝑥
𝑑𝑥, 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥.  

We will write for the node A (Fig. 8.1) the Kirchoff equation for 

currents, and for the loop, indicated by an arrow, the Kirchoff equation 

for voltage.  

{
𝑖 − (𝑖 +

𝜕𝑖

𝜕𝑥
𝑑𝑥) − ( 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥)𝐺1𝑑𝑥 − 𝐶1𝑑𝑥

𝜕

𝜕𝑥
( 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) = 0;

−𝑢 + 𝑅1𝑑𝑥𝑖 + 𝐿1𝑑𝑥
𝜕𝑖

𝜕𝑡
+ 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥 = 0,                                                 

 

or 

{
𝑖 = (𝑖 +

𝜕𝑖

𝜕𝑥
𝑑𝑥) + ( 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥)𝐺1𝑑𝑥 + 𝐶1𝑑𝑥

𝜕

𝜕𝑡
( 𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) ;

𝑢 − (𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥) = 𝑅1𝑑𝑥𝑖 + 𝐿1𝑑𝑥

𝜕𝑖

𝜕𝑡
.                                                 

 

 

  
Fig. 8.1 

 

Expanding the brackets, shortening on 𝑑𝑥 and neglecting the terms 

with (𝑑𝑥)2 as infinitesimal second order, we get 

{
 
 

 
 𝑢 − 𝑢 −

𝜕𝑢

𝜕𝑥
𝑑𝑥 = 𝑅1𝑑𝑥𝑖 + 𝐿1𝑑𝑥

𝜕𝑖

𝜕𝑡
;                                                           

𝑖 = 𝑖 +
𝜕𝑖

𝜕𝑥
𝑑𝑥 + 𝑢𝐺1𝑑𝑥 +

𝜕𝑢

𝜕𝑥
𝑑𝑥𝐺1𝑑𝑥 + 𝐶1𝑑𝑥

𝜕𝑢

𝜕𝑡
 + 𝐶1𝑑𝑥

𝜕

𝜕𝑡

𝜕𝑢

𝜕𝑥
𝑑𝑥.

                                                 

 

Finally 

{
−
𝜕𝑢

𝜕𝑥
= 𝑅1𝑖 + 𝐿1

𝜕𝑖

𝜕𝑡
;

−
𝜕𝑖

𝜕𝑥
= 𝐺1𝑢 + 𝐶1

𝜕𝑢

𝜕𝑡
.

                                     (8.1) 

Equations (8.1) are called differential equations of LL or 

telegraphic equations. 
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8.2 Long line with harmonious influence 

 

We write the equation (8.1) in the operator form, moving from time 

t to the operator p: 

{
−
𝑑𝐼(𝑥, 𝑝)

𝑑𝑥
= (𝐺1 + 𝑝𝐶1) 𝑈(𝑥, 𝑝) − 𝐶1𝑢(𝑥, 0);

−
𝑑𝑈(𝑥, 𝑝)

𝑑𝑥
= (𝑅1 + 𝑝𝐿1) 𝐼(𝑥, 𝑝) − 𝐿1𝑖(𝑥, 0).

 

At zero initial conditions 𝑢(𝑥, 0) = 0, 𝑖(𝑥, 0)  =  0 

{
−
𝑑𝐼(𝑥, 𝑝)

𝑑𝑥
= 𝑌1(𝑝) 𝑈(𝑥, 𝑝);

−
𝑑𝑈(𝑥, 𝑝)

𝑑𝑥
= 𝑍1(𝑝) 𝐼(𝑥, 𝑝),

                            (8.2) 

where 

𝑌1(𝑝) = 𝐺1 + 𝑝𝐶1, 𝑍1(𝑝) = 𝑅1 + 𝑝𝐿1. 

We differentiate the left and right sides of the second equation 

(8.2). We'll get it 

𝑑𝐼(𝑥, 𝑝)

𝑑𝑥
= −

1

𝑍1(𝑝)

𝑑2𝑈(𝑥, 𝑝)

𝑑𝑥2
. 

We substitute in the first equation (8.2) 

𝑑2𝑈(𝑥, 𝑝)

𝑑𝑥2
= 𝑍1(𝑝)𝑌1(𝑝) 𝑈(𝑥, 𝑝) = 𝛾

2(𝑝) 𝑈(𝑥, 𝑝), 

or 

𝑑2𝑈(𝑥, 𝑝)

𝑑𝑥2
− 𝛾2(𝑝) 𝑈(𝑥, 𝑝) = 0,                           (8.3) 

where 𝛾(𝑝) - is the operator coefficient of  propagation.  

It is equal 

𝛾(𝑝) = √𝑍1(𝑝)𝑌1(𝑝) = √(𝑅1 + 𝑝𝐿1)(𝐺1 + 𝑝𝐶1).   (8.4) 

The general solution of equation (8.3), as an equation without the 

right-hand side, has the form 

𝑈(𝑥, 𝑝) = 𝐴1(𝑝)𝑒
−𝛾(𝑝)𝑥 + 𝐴2(𝑝)𝑒

𝛾(𝑝)𝑥,   (8.5) 

 

where 𝐴1(𝑝), 𝐴2(𝑝) – the constants of integration (determined from the 

initial conditions at 𝑥 = 0 (beginning of LL) and 𝑥 = 1 (end of LL); l – 

the length LL; −γ(𝑝), γ(𝑝) – the roots of the characteristic equation 

𝑝2 + 𝛾2(𝑝) = 0, compiled for equation (8.3). 
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We differentiate the expression (8.5) by x and substitute it in the 

second equation (8.2) 

−𝐴1(𝑝)𝑒
−𝛾(𝑝)𝑥[−𝛾(𝑝)] − 𝐴2(𝑝)𝑒

𝛾(𝑝)𝑥𝛾(𝑝) = 𝑍1(𝑝) 𝐼(𝑥, 𝑝). 
From here 

𝐼(𝑥, 𝑝) =
𝐴1(𝑝)𝑒

−𝛾(𝑝)𝑥

𝑍1(𝑝)
γ(𝑝)

−
𝐴2(𝑝)𝑒

𝛾(𝑝)𝑥

𝑍1(𝑝)
γ(𝑝)

= 

(8.6) 

=
𝐴1(𝑝)𝑒

−𝛾(𝑝)𝑥

𝑍𝑤(𝑝)
−
𝐴2(𝑝)𝑒

𝛾(𝑝)𝑥

𝑍𝑤(𝑝)
, 

where 𝑍𝑤 - the wave impedance.  

It is equal 

𝑍𝑤 =
𝑍1(𝑝)

γ(𝑝)
=

𝑍1(𝑝)

√𝑍1(𝑝)𝑌1(𝑝)
= √

𝑍1(𝑝)

𝑌1(𝑝)
= √

𝑅1 + 𝑝𝐿1
𝐺1 + 𝑝𝐶1

.      (8.7) 

The system of equations (8.5) and (8.7) gives the value of operator 

voltages and currents of LL, depending on the coordinate x. 

{

�̇�(𝑥) = �̇�1𝑒
−�̇�𝑥 + �̇�2𝑒

�̇�𝑥 = 𝑈𝑓𝑜𝑙(𝑥) + 𝑈𝑟𝑒𝑓(𝑥);

𝐼(̇𝑥) =
�̇�1
𝑍𝑤

𝑒−�̇�𝑥 −
�̇�2
𝑍𝑤

𝑒�̇�𝑥 = 𝐼𝑓𝑜𝑙(𝑥) + 𝐼𝑟𝑒𝑓(𝑥).   
        (8.8) 

For the analysis of processes in LL under harmonic influence, we 

rewrite the equations (8.5) and (8.6) in the complex form, replacing 𝑝 

with 𝑗ω: 

𝛾 = √(𝑅1 + 𝑗𝜔𝐿1)(𝐺1 + 𝑗𝜔𝐶1), 𝑍𝑤 = √
𝑅1 + 𝑗𝜔𝐿1
𝐺1 + 𝑗𝜔𝐶1

.      (8.9) 

where 𝛾1 - the coefficient of propagation, 𝑍𝑤 – the wave impedance.  

It is equal to: 

�̇� = 𝛼 + 𝑗𝛽;    (8.10) 

𝑍𝑤 = 𝑍𝑤𝑒
𝑗𝜑;     (8.11) 

�̇�1 = 𝐴1𝑒
𝑗1; �̇�2 = 𝐴2𝑒

𝑗2.   (8.12) 

We substitute the expressions (8.10) - (8.12) in equation (8.8) 

{

�̇�(𝑥) = 𝐴1𝑒
𝑗1𝑒−(𝛼+𝑗𝛽)𝑥 + 𝐴2𝑒

𝑗2𝑒(𝛼+𝑗𝛽)𝑥;

𝐼(̇𝑥) =
𝐴1𝑒

𝑗1𝑒−(𝛼+𝑗𝛽)𝑥

𝑍𝑤𝑒
𝑗𝜑

−
𝐴2𝑒

𝑗2𝑒(𝛼+𝑗𝛽)𝑥

𝑍𝑤𝑒
𝑗𝜑

,  
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or through instantaneous values in the real form 

{
 
 
 

 
 
 𝑢(𝑥, 𝑡) = √2𝐴1𝑒

−𝛼𝑥 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥 + 𝜑1) +

+√2𝐴2𝑒
𝛼𝑥 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥 + 𝜑2) ;

                

𝑖(𝑥, 𝑡) =
√2𝐴1𝑒

−𝛼𝑥

𝑍𝑤
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑥 + 

1
− 𝜑) +

+
√2𝐴2𝑒

𝛼𝑥

𝑍𝑤
𝑐𝑜𝑠(𝜔𝑡 + 𝛽𝑥 + 

2
− 𝜑) .

 

You can also write 

{
𝑢(𝑥, 𝑡) = 𝑢𝑓𝑜𝑙(𝑥, 𝑡) + 𝑢𝑟𝑒𝑓(𝑥, 𝑡);  

𝑖(𝑥, 𝑡) = 𝑖𝑓𝑜𝑙(𝑥, 𝑡) − 𝑖𝑟𝑒𝑓(𝑥, 𝑡),
 

where 

{
𝑢𝑓𝑜𝑙(𝑥, 𝑡) = √2𝐴1𝑒

−𝛼𝑥 cos(𝜔𝑡 − 𝛽𝑥 + 
1) ;

𝑢𝑟𝑒𝑓(𝑥, 𝑡) = √2𝐴2𝑒
𝛼𝑥 cos(𝜔𝑡 + 𝛽𝑥 − 

2);  
  (8.13) 

{
 
 

 
 𝑖𝑓𝑜𝑙(𝑥, 𝑡) =

√2𝐴1𝑒
−𝛼𝑥

𝑍𝑤
cos(𝜔𝑡 − 𝛽𝑥 + 

1
− φ);      

𝑖𝑟𝑒𝑓(𝑥, 𝑡) = −
√2𝐴2𝑒

𝛼𝑥

𝑍𝑤
cos(𝜔𝑡 + 𝛽𝑥 + 

2
− 𝜑) =

=
√2𝐴2𝑒

𝛼𝑥

𝑍𝑤
cos(𝜔𝑡 + 𝛽𝑥 + 

2
− 𝜑 + 𝜋) ,

    (8.14) 

where 𝑢𝑓𝑜𝑙, 𝑖𝑓𝑜𝑙, 𝑢𝑟𝑒𝑓, 𝑖𝑟𝑒𝑓 – falling and reflected waves of voltage and 

current.       

Physical content of voltage  and current waives is as follows. Let's 

consider, the incident and reflected waves of the voltage. In the incident 

wave (fig. 8.2,a), with increasing of  x, one and the same voltage phase 

occurs at a greater value of t, that is, later. If you take it the starting 

point is the beginning of the line, then the maximum value of the wave 

over time shifted from the beginning of the line to its end: the wave of 

voltage as if moving from the beginning of the line. In the reflected 

wave (fig. 8.2, b), with increasing of  x, one and the same voltage phase 

occurs at a lower value of t, that is, before: the voltage wave moves 

from the end of the line to its beginning, returns. The amplitudes of the 

incident and reflected waves are reduced by exponentially in the 

direction of distribution (Fig. 8.2). 
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a       b 

Fig.8.2 

 

The value 𝛼 = Re[𝛾] is called the attenuation constant. Attenuation 

is caused by energy loss in 𝑅1, 𝐺1. 

The value 𝛽 = Im[𝛾] is called the phase coefficient and shows the 

phase change per unit length. 

For a lossless line (𝑅1 = 0, 𝐺1 = 0) 

𝛼 = 0; 𝛾 = 𝑗𝜔√𝐿1𝐶1; 𝛽 = 𝜔√𝐿1𝐶1.   (8.15) 

The distance between two points of the wave, the phases of which 

are different, is called the wave length. The wave length is found from 

the ratio 

(𝜔𝑡 − 𝛽𝑥 + 
1) − [𝜔𝑡 − 𝛽(𝑥 + 𝜆) + 

1] = 2𝜋. 

From here 

𝜆 =
2𝜋

𝛽
.                                                     (8.16) 

For the lossless line, taking into account the expressions (8.15), we 

have 

𝜆 =
2𝜋

𝜔√𝐿1𝐶1
=

1

𝑓√𝐿1𝐶1
.                                   (8.17) 

The velocity of moving along the line of the point with the same 

phase is called the phase velocity υ𝑝ℎ =
𝑑𝑥

𝑑𝑡
. 

Speed is determined by the ratio 

(𝜔𝑡 − 𝛽𝑥 + 
1) = const 
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or 
𝑑

𝑑𝑡
(𝜔𝑡 − 𝛽𝑥 + 

1) = 0, 

that is 

𝜔 − 𝛽
𝑑𝑥

𝑑𝑡
= 0;  υ𝑝ℎ.𝑓𝑜𝑙 =

𝑑𝑥

𝑑𝑡
=
𝜔

𝛽
. 

In accordance 

υ𝑝ℎ.𝑟𝑒𝑓 = −
𝜔

𝛽
. 

For the lossless line taking into account the expressions (8.15) we 

get 

υ𝑝ℎ = υ𝑝ℎ.𝑓𝑜𝑙 = |υ𝑝ℎ.𝑟𝑒𝑓| =
1

√𝐿1𝐶1
.              (8.18) 

The phase velocity in the DL is close to the speed of light. 

Obviously, from the expressions (8.16), (8.17), (8.18) 

𝜆 =
2𝜋𝜐𝑝ℎ

𝜔
=
𝜐𝑝ℎ

𝑓
. 

Wavelength impedance 𝑍𝑤 and propagation coefficient are called 

wave or secondary parameters of LL. 

 

 

8.3. Reflection coefficient 

 

The ratio of the voltage or currents of the reflected and incident 

waves in an arbitrary intersection of DL is called the reflection 

coefficient: 

�̇�𝑢(𝑥) =
�̇�𝑟𝑒𝑓(𝑥)

�̇�𝑓𝑜𝑙(𝑥)
=
�̇�2𝑒

�̇�𝑥

�̇�1𝑒
−�̇�𝑥

=
�̇�2

�̇�1
𝑒2�̇�𝑥; 

�̇�𝑖(𝑥) =
𝐼�̇�𝑒𝑓(𝑥)

𝐼�̇�𝑜𝑙(𝑥)
= −

�̇�2𝑒
�̇�𝑥𝑍𝑤

�̇�1𝑒
−�̇�𝑥𝑍𝑤

= −
�̇�2

�̇�1
𝑒2�̇�𝑥.          (8.19) 

That is 

�̇�𝑢(𝑥) = −�̇�𝑖(𝑥) = �̇�(𝑥). 
Let define integration constants �̇�1, �̇�2. Let’s put in equation (8.8) 

that 𝑥 = 0. We’ll get it 
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{

�̇�(0) = �̇�1 = �̇�1 + �̇�2;

𝐼(̇0) = 𝐼1̇ =
�̇�1
𝑍𝑤

−
�̇�2
𝑍𝑤

,   
                            (8.20) 

where �̇�1, 𝐼1̇ – voltage and current at the beginning of the line. 

So, 

�̇�1 =
�̇�1 + 𝐼1̇𝑍𝑤

2
; �̇�2 =

�̇�1 − 𝐼1̇𝑍𝑤
2

.                   (8.21) 

According to the expression (8.19) 

�̇�(𝑥) = �̇�𝑢(𝑥) =
�̇�1 − 𝐼1̇𝑍𝑤

�̇�1 + 𝐼1̇𝑍𝑤
𝑒2�̇�𝑥 = �̇�1𝑒

2�̇�𝑥,           (8.22) 

where ρ̇1 – reflection coefficient at the beginning of the line       

�̇�1 =
�̇�1 − 𝐼1̇𝑍𝑤

�̇�1 + 𝐼1̇𝑍𝑤
=

�̇�1
𝐼1̇
− 𝑍𝑤

�̇�1
𝐼1̇
+ 𝑍𝑤

=
𝑍11 − 𝑍𝑤  

𝑍11 + 𝑍𝑤
.             (8.23) 

Consequently, the reflection coefficient at the beginning of the line 

is determined by the ratio between the input impedance of the line 𝑍11 

and its wave impedance 𝑍𝑤. 

Integration constants �̇�1, �̇�2 can be determined by the voltage �̇�2 

and current 𝐼2̇  at the end of the line. We substitute in the expression 

(8.8) 𝑥 = 𝑙: 

{

�̇�(𝑙) = �̇�2 = �̇�1𝑒
−�̇�𝑙 + �̇�2𝑒

�̇�𝑙;

𝐼(̇𝑙) = 𝐼2̇ =
�̇�1
𝑍𝑤

𝑒−�̇�𝑙 −
�̇�2
𝑍𝑤

𝑒�̇�𝑙.   
 

Now 

�̇�1 =
�̇�2 + 𝐼2̇𝑍𝑤

2
𝑒�̇�𝑙; �̇�2 =

�̇�2 − 𝐼2̇𝑍𝑤
2

𝑒−�̇�𝑙. 

Then, in accordance with the expression (8.19) 

�̇�(𝑥) = �̇�𝑢(𝑥) =
�̇�2 − 𝐼2̇𝑍𝑤

�̇�2 + 𝐼2̇𝑍𝑤
𝑒−2�̇�(𝑙−𝑥) = �̇�2𝑒

2�̇�𝑥′ ,       (8.24) 

where ρ̇2 – reflection coefficient at the end of the line; 𝑥′ = 𝑙 − 𝑥 – 

distance deduced from the end of  the line 
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�̇�2 =
�̇�2 − 𝐼2̇𝑍𝑤

�̇�2 + 𝐼2̇𝑍𝑤
=

�̇�2
𝐼2̇
− 𝑍𝑤

�̇�2
𝐼2̇
+ 𝑍𝑤

=
𝑍𝑙 − 𝑍𝑤  

𝑍𝑙 + 𝑍𝑤
.                 (8.25) 

Thus, the reflection coefficient at the end of the line ρ̇2 is 

determined by its relation between the load resistance of the line 𝑍𝑙 and 

its wave impedance 𝑍𝑤. 

From the formulas (8.22) and (8.24) we find the module of the 

coefficient of reflection 

Mod[𝜌(𝑥)] = Mod[𝜌1𝑒
2(𝛼+𝑗𝛽)𝑥] = 𝜌1𝑒

2𝛼𝑥 = 

(8.26) 

Mod[𝜌2𝑒
−2(𝛼+𝑗𝛽)𝑥′] = 𝜌2𝑒

−2𝛼𝑥′ . 
From expression (8.26) it is seen that the reflection coefficient 

module smoothly increases with height х and reaches the highest value 

at the end of the line (х = 𝑙): 
𝜌𝑚𝑎𝑥(𝑥) = 𝜌1𝑒

2𝛼𝑙 = 𝜌2. 

For the lossless line (8.15), the reflection coefficient module retains 

the same value at all cross sections of the line 

𝜌 = 𝜌1 = 𝜌2. 

The voltage �̇�(𝑥) and current 𝐼(̇𝑥) at any intersection of the line 

can be expressed through voltage �̇�1, current 𝐼1̇ and reflection 

coefficient ρ1 at the beginning of the line. 

From formulas (8.8) and (8.21) we find 

�̇�(𝑥) =
�̇�1 + 𝐼1̇𝑍𝑤

2
𝑒−�̇�𝑥 +

�̇�1 − 𝐼1̇𝑍𝑤
2

𝑒�̇�𝑥.         (8.27) 

From expression (8.23) we obtain 

ρ̇1�̇�1 + ρ̇1𝐼1̇𝑍𝑤 = �̇�1 − 𝐼1̇𝑍𝑤;    𝐼1̇𝑍𝑤 =
1 − ρ̇1
1 + ρ̇1

�̇�1.    (8.28) 

We substitute expression (8.28) into formula (8.27). We have: 

�̇�(𝑥) =
1

2
[�̇�1(𝑒

−�̇�𝑥 + 𝑒�̇�𝑥) +
1 − �̇�1
1 + �̇�1

�̇�1(𝑒
−�̇�𝑥 − 𝑒�̇�𝑥)] = 

=
1

2(1 + �̇�1)
(2�̇�1𝑒

−�̇�𝑥 + 2�̇�1�̇�1𝑒
−�̇�𝑥) =               (8.29) 

=
𝑒−�̇�𝑥 + 𝜌1𝑒

�̇�𝑥

1 + 𝜌1
�̇�1 =

𝑒−�̇�𝑥 + 𝜌1𝑒
�̇�𝑥

1 − 𝜌1
𝐼1̇𝑍𝑤 . 
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We obtain from formulas (8.8) and (8.21) : 

𝐼(̇𝑥) =
�̇�1 + 𝐼1̇𝑍𝑤
2𝑍𝑤

𝑒−�̇�𝑥 −
�̇�1 − 𝐼1̇𝑍𝑤
2𝑍𝑤

𝑒�̇�𝑥.         (8.30) 

From the expressions (8.28) we obtain 

�̇�1 =
1 + �̇�1
1 − �̇�1

𝐼1̇𝑍𝑤.                                  (8.31) 

We substitute expression (8.31) into formula (8.30) 

𝐼(̇𝑥) = 

=
1

2𝑍𝑤
[(
1 + �̇�1
1 − �̇�1

𝐼1̇𝑍𝑤 + 𝐼1̇𝑍𝑤) 𝑒
−�̇�𝑥 − (

1 + �̇�1
1 − �̇�1

𝐼1̇𝑍𝑤 − 𝐼1̇𝑍𝑤) 𝑒
�̇�𝑥] = 

(8.32) 

=
𝑒−�̇�𝑥 − �̇�1𝑒

�̇�𝑥

1 − �̇�1
𝐼1̇ =

𝑒−�̇�𝑥 − �̇�1𝑒
�̇�𝑥

(1 + �̇�1)𝑍𝑤
�̇�1. 

From the expressions (8.29) and (8.32), by 𝑥′ = 𝑙 − 𝑥, �̇�1 = �̇�2, 

𝐼1̇ = 𝐼2̇, having put we have formulas for currents and and voltages 

depending on, 𝑥′ ie, when counting the distance from the end of the line 

�̇�(𝑥) =
𝑒�̇�𝑥

′
+ �̇�2𝑒

−�̇�𝑥′

1 + �̇�2
�̇�2 =

𝑒�̇�𝑥
′
− �̇�2𝑒

−�̇�𝑥′

1 − �̇�2
𝐼2̇𝑍𝑤;       (8.33) 

𝐼(̇𝑥) =
𝑒�̇�𝑥

′
− �̇�2𝑒

−�̇�𝑥′

1 − �̇�2
𝐼2̇ =

𝑒�̇�𝑥
′
− �̇�2𝑒

−�̇�𝑥′

(1 + �̇�2)𝑍𝑤
�̇�2.         (8.34) 

 

 

8.4. Wave modes 

 

Mode of running waves. If the reflection coefficient ρ(𝑥) is zero, 

then the reflected wave will not be left, only the incident wave will 

remain. This is possible with formula (8.24) when 𝑙 = ∞, the incident 

wave does not reach the end of the line, and therefore can not be 

reflected. 

The mode of running waves also arises in a coordinated mode, if 

𝑍𝑙 = 𝑍𝑤. 

Then in the formula (8.25) ρ2 = 0 and in the formula (8.24) 

ρ(𝑥) = 0. In the absence of a reflected wave (𝑈𝑟𝑒𝑓  (𝑥) = 0, 𝐼𝑟𝑒𝑓(𝑥) =

0) in the line remain only falling waves: 
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{
�̇�(𝑥) = �̇�𝑓𝑜𝑙(𝑥) = �̇�1𝑒

−�̇�𝑥;

𝐼(̇𝑥) = 𝐼�̇�𝑜𝑙(𝑥) =
�̇�1

𝑍𝑤
𝑒−�̇�𝑥.   

   (8.35) 

Obviously, by the equation (8.20) 

�̇�1 = �̇�1 = 𝐼1̇𝑍𝑤     (8.36) 

Then we have in the formula (8.35) 

{

�̇�(𝑥) = �̇�1𝑒
−�̇�𝑥 = 𝐼1̇𝑍𝑤𝑒

−�̇�𝑥;

𝐼(̇𝑥) =
�̇�1
𝑍𝑤

𝑒−�̇�𝑥 = 𝐼1̇𝑒
−�̇�𝑥.   

 

That is, in running wave mode the amplitudes of the voltage and 

current exponentially decreases with height x. For the loss-free line 

(α = 0) the amplitudes of the voltage and current remain unchanged in 

all sections of the LL. 

In running waves the input impedance 𝑍11 is equal to the wave 

impedance according to equation (7.36) 

𝑍11 =
�̇�1

𝐼1̇
= 𝑍𝑤 . 

In running wave modes  energy is transmitted only in one direction 

– from the source  to the load. 

Standing wave mode. If 𝑍𝑙 ≠ 𝑍𝑤 then only part of the energy 

transmitted by the incident wave is consumed by the load. The rest of 

the energy in the form of a reflected wave goes back to the source. If 

these energies are identical, a standing wave is established. Obviously 

that 

𝜌(�̇�) = 1.    (8.37) 

From formula (8.24) we have 

𝜌(𝑥) = 𝜌2𝑒
−2𝛼𝑥′ . 

Given the expression (8.37) we have 

𝜌2 = 1, 𝛼 = 0,    (8.38) 

that is, the mode of standing waves is set in a line without losses. 

Given the value (8.38), we obtain from formula (8.25) 

𝑍𝑙 = 0; 𝑍𝑙 = ∞; 𝑍𝑙 = Im[𝑍𝑙], 
that is the mode of standing waves is established in a line without losses 

at short circuit or idling, as well as at a purely reactive load. 

In the short circuit cuuutnt at the output (𝑍𝑙 = 0) according to the 

formula (8.25) 𝜌2 = 𝜌𝑢 = −1, ie the voltage of the incident and 
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reflected waves at the end of the LL are identical in amplitude, but are 

displaced by 180°. The instantaneous voltage output is zero. 

For a current in accordance with expression (8.19) 

𝜌2 = 𝜌𝑢 = −1. 

That is, the current of the incident and reflected waves at the end of 

the LL is the same in amplitude and coincides in phase. The 

instantaneous value of the current at the output is the maximum. 

In the mode of standing waves, if α = 0, then by equations (8.9) 

and (8.10) 

𝑍𝑤 = √
𝐿1
𝐶1
= 𝑅𝑤;    �̇� = 𝑗𝛽. 

Then, with a short circuit at the output (ρ2 = −1) from the 

expressions (8.33) and (8.34) we get 

�̇�(𝑥) =
𝑒𝑗𝛽𝑥

′
− 𝑒−𝑗𝛽𝑥

′

2
𝐼2̇𝑅𝑤 = 𝑗𝐼2̇𝑅𝑤 sin(𝛽𝑥

′); 

𝐼(̇𝑥) =
𝑒𝑗𝛽𝑥

′
+ 𝑒−𝑗𝛽𝑥

′

2
𝐼2̇ = 𝐼2̇ cos(𝛽𝑥

′) = 𝐼2̇ ch(𝑗𝛽𝑥
′). 

Because of instantaneous values 

{
𝑢(𝑥, 𝑡) = [√2𝐼2𝑅𝑤 sin(𝛽𝑥

′)] cos (𝜔𝑡 +
𝜋

2
) ;

𝑖(𝑥, 𝑡) = [√2𝐼2 cos(𝛽𝑥
′)] cos(𝜔𝑡),                

 

that is, with a short circuit current at the output the amplitude of the 

voltage and current vary along the line according to the harmonic law: 

{
𝑈𝑚(𝑥) = √2𝐼2𝑅𝑤 sin(𝛽𝑥

′) ;

𝐼𝑚(𝑥) = √2𝐼2 cos(𝛽𝑥
′).      

   (7.39) 

The change in voltage 𝑈𝑚(𝑥) and current 𝐼𝑚(𝑥) is shown in fig. 

8.3, a, b respectively. Points on the axis 𝑥′ (indicated by (•)), where the 

amplitudes of the voltage or current are zero, are called nodes. Points 

marked (×), where the amplitudes of the voltage and current are 

maximal, - the antinode. The location of nodes and antinodes on the axis 

𝑥′ in time does not change. The wave is "standing" in the pleace. 

Therefore  this mode is called standing wave mode. 

From the above it is clear, that the nodes occur in those sections of 

the LL, where the voltages or currents of the incident and reflected 

waves are opposite to the phase and at the time of compilation give zero, 
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and the antinodes - in those sections, where the voltages or currents 

coincide in phase and during compilation give maximum values. 

In stationary waves, the active energy along the line is not 

transmitted, only the energy exchange between the electric and magnetic 

fields  of LL occurs. 

At idle of the output (𝜌2 = 1) of the equation (8.39) picks up 

{
𝑈𝑚(𝑥) = √2𝑈2 cos(𝛽𝑥

′) ;

𝐼𝑚(𝑥) = √2
𝑈2
𝑅𝑤

sin(𝛽𝑥′).  
 

In this case, at the end of the line there will be the voltage antinode 

and the current node, the diagrams (Fig. 8.3) are shifted to the left or to 

the right for a quarter of the wave length. 

 

 
Fig. 8.3 

 

If the load Іmpedance nce is purely reactive, then 

𝑍𝑙 = 𝑗𝑥𝑙.    (8.40) 

We substitute expression (8.40) in (8.25) for a loss less line 

�̇�2 =
𝑗𝑥𝑙 − 𝑅𝑤
𝑗𝑥𝑙 + 𝑅𝑤

= 𝑒𝑗𝜑𝜌2 ,                             (8.41) 

where 
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𝜑𝜌2 = {

𝜋 − 2arctg
𝑥𝑙
𝑅𝑤
     𝑥𝑙 > 0;

−𝜋 − 2arctg
𝑥𝑙
𝑅𝑤
    𝑥𝑙 < 0.

 

Then the voltage and current of the line from equations (8.33) and 

(8.34), using (8.41) 

{
 

 �̇�(𝑥) = �̇�2√1 + (
𝑥𝑙

𝑅𝑤
)
2
cos(𝛽𝑥′ − 𝜑) ;

𝐼(̇𝑥) = −𝐼2̇√1+ (
𝑥𝑙

𝑅𝑤
)
2
sin(𝛽𝑥′ − 𝜑) ,   

   (8.42) 

where 

𝜑 = arctg
𝑥𝑙
𝑅𝑤

. 

From expression (8.42) it can be seen that the amplitudes of voltage 

and current vary along the line according to the harmonic law. The 

points of the antinodes and the nodes of the voltage (Fig. 8.4, a) and 

current (Fig. 8.4, b) are shifted relative to the corresponding points for 

idle and short-circuit modes on 𝑙1 = 𝜑
𝜆

2𝜋
. At the end of the line there 

are not nodes, and antinodes of voltage or current. 

 

 
a      b 

Fig. 8.4 

 

Mixed wave mode. The mode of mixed waves occupies an 

intermediate position between the modes of running and standing 

waves. Energy at the end of the line, wich transmitted by the wave, 

partially absorbed by the load and partly reflected. In this mode, the 

amplitudes of the voltage (Fig. 8.5, a) and current (Fig. 8.5, b) in the 

minima do not equal zero. The larger 𝑈𝑚𝑚𝑖𝑛, 𝐼𝑚𝑚𝑖𝑛  , the smaller the 
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part of the energy is reflected from the load, and the stronger the mode 

of mixed waves will be different from the regime of standing waves. 

 

 
a 

 
b 

Fig. 8.5 

 

Valua  

𝐾𝛿 =
𝑈𝑚𝑚𝑖𝑛
𝑈𝑚𝑚𝑎𝑥

=
𝐼𝑚𝑚𝑖𝑛
𝐼𝑚𝑚𝑎𝑥

                          (8.43) 

іs called runway wave ratio (CRW) 

0 ≤ 𝐾𝛿 ≤ 1. 

If 

{
𝑈𝑚𝑚𝑖𝑛 = 𝑈𝑚𝑓𝑜𝑙 + 𝑈𝑚𝑟𝑒𝑓,

𝑈𝑚𝑚𝑎𝑥 = 𝑈𝑚𝑓𝑜𝑙 − 𝑈𝑚𝑟𝑒𝑓.
 

Then, according to the expressions (8.19) and (8.43) 

𝐾𝛿 =
𝑈𝑚𝑓𝑜𝑙 − 𝑈𝑚𝑟𝑒𝑓

𝑈𝑚𝑓𝑜𝑙 + 𝑈𝑚𝑟𝑒𝑓
=

1 −
𝑈𝑚𝑟𝑒𝑓
𝑈𝑚𝑓𝑜𝑙

1 +
𝑈𝑚𝑟𝑒𝑓
𝑈𝑚𝑓𝑜𝑙

=
1 − 𝜌(𝑥)

1 + 𝜌(𝑥)
. 

Valua 

𝐾𝐶 =
1

𝐾𝛿
=
1 + 𝜌(𝑥)

1 − 𝜌(𝑥)
 

is called standing wave coefficient(CSW) ∞ > 𝐾𝐶 ≥  1. 
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8.5. Transition processes in circles with distributed parameters 

 

Let's consider the calculation of transient processes in circuit with 

distributed parameters on the example of  LL. The calculation of 

transient processes is often reduced to the determination of the voltages 

and currents in different sections of the LL. Consider, for example, the 

distribution of voltages and currents in a homogeneous line without any 

loss at any external influence. 

Let the voltage in the input line 𝑢1 = 0 at 𝑡 < 0, and when it 

changes at 𝑡 ≥ 0 according to the law 𝑢1(𝑡), ie 

𝑢1(𝑡) = 1(𝑡)𝑢1(𝑡). 
Let there also be a coordinated mode in the line, that is, the load 

impedance has an active resistance and is equal to the wave impedance 

𝑍𝑙 = 𝑅𝑤 = √
𝐿1
𝐶1
. 

We define the operator image of the voltage and current by 

expressions (8.5), (8.6). Integration constants 𝐴1(𝑝) and 𝐴2(𝑝) found at 

the beginning conditions (𝑥 = 0) and at the end (𝑥 = 1) of the line: 

𝑈(0, 𝑝) = 𝑈1(𝑝);  𝑈(𝑙, 𝑝) = 𝐼(𝑙, 𝑝)𝑅𝑤   (8.44) 

By 𝑥 = 0 and 𝑥 = 1 we obtain from the expressions (8.5) and (8.6) 

𝑈(0, 𝑝) = 𝐴1(𝑝) + 𝐴2(𝑝);      (8.45) 

𝑈(𝑙, 𝑝) = 𝐴1(𝑝)𝑒
−𝛾(𝑝)𝑙 + 𝐴2(𝑝)𝑒

𝛾(𝑝)𝑙   (8.46) 

𝐼(𝑙, 𝑝) =
𝐴1(𝑝)

𝑅𝑤
𝑒−γ(𝑝)𝑙 −

𝐴2(𝑝)

𝑅𝑤
𝑒γ(𝑝)𝑙.  (8.47) 

We substitute (8.44) in the expressions (8.45) - (8.47) 

𝐴1(𝑝) = 𝑈1(𝑝); 𝐴2(𝑝) = 0. 

Then, according to equations (8.5) and (8.6) 

{
𝑈(𝑥, 𝑝) = 𝑈1(𝑝)𝑒

−𝛾(𝑝)𝑥=𝑈1(𝑝)𝑒
−p√𝐿1𝐶1𝑥;

𝐼(𝑥, 𝑝) =
𝑈1(𝑝)

𝑅𝑤
𝑒−𝛾(𝑝)𝑥=𝐼1(𝑝)𝑒

−p√𝐿1𝐶1𝑥,
  (8.48) 

since for a loss less line (𝑅1 = 0, 𝐺1 = 0) in accordance with expression 

(8.4) 

𝛾(𝑝) = 𝑝√𝐿1𝐶1. 

In the system (8.48) 𝐼1(𝑝) = 𝐼(0, 𝑝) =
𝑈1(𝑝)

𝑅𝑤
 is the operator image 

of the current at the input LL. 
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Using the delay theorem, from the expression (8.48) we can 

conclude that the voltage and current in an arbitrary intersection of LL 

𝑢(𝑥, 𝑡), 𝑖(𝑥, 𝑡) repeat the voltage and current at the beginning of the 

delay line 𝑢1, 𝑖1 for the period of time 𝑡𝑥 = √𝐿1𝐶1𝑥 =
𝑥

υ𝑝ℎ
, for which 

the incident wave reaches the intersection x. The end of the line will 

reach this wave after a period of time 

𝑡0 = √𝐿1𝐶1𝐼 =
𝑙

υ𝑝ℎ
. 

Let at the moment 𝑡 = 0 to input of the LL, opened at the end, 

connect the voltage 𝑢1(𝑡) = 𝐸. Then, by the equation (8.44) 

𝑈(0, 𝑝) = 𝑈1(𝑝) =
𝐸

𝑝
;   𝐼(𝑙, 𝑝) = 0.                  (8.49) 

Substituting expressions (8.49) in the formula (8.45) - (8.47), we 

get 

{
 
 

 
 𝐸

𝑝
= 𝐴1(𝑝) + 𝐴2(𝑝);                        

𝐴1(𝑝)

𝑅𝑤
𝑒−γ(𝑝)𝑙 −

𝐴2(𝑝)

𝑅𝑤
𝑒γ(𝑝)𝑙 = 0.

 

Where from 

𝐴1(𝑝) =
1

1 + 𝑒−2𝑙𝛾(𝑝)
𝐸

𝑝
;  𝐴2(𝑝) =

𝑒−2𝑙𝛾(𝑝)

1 + 𝑒−2𝑙𝛾(𝑝)
𝐸

𝑝
.    (8.50) 

From the formulas (8.5), (8.6) taking into account (8.50), we find: 

𝑈(𝑥, 𝑝) =
𝑒−𝑥𝛾(𝑝) + 𝑒−(2𝑙−𝑥)𝛾(𝑝)

1 + 𝑒−2𝑙γ(𝑝)
𝐸

𝑝
=
𝑒−𝑝𝑡𝑥 + 𝑒−𝑝(2𝑡0−𝑡𝑥)

1 + 𝑒−2𝑝𝑡0

𝐸

𝑝
.   (8.51) 

𝐼(𝑥, 𝑝) =
𝑒−𝑥𝛾(𝑝) − 𝑒−(2𝑙−𝑥)γ(𝑝)

1 + 𝑒−2𝑙γ(𝑝)
𝐸

𝑝𝑅𝑤
=
𝑒−𝑝𝑡𝑥 − 𝑒−𝑝(2𝑡0−𝑡𝑥)

1 + 𝑒−2𝑝𝑡0

𝐼0
𝑝

. (8.52) 

We portray the sum of an infinitely complicated geometric 

progression 
1

1 + 𝑒−2𝑝𝑡0
= 1 − 𝑒−2𝑝𝑡0 + 𝑒−4𝑝𝑡0 − 𝑒−6𝑝𝑡0 + 𝑒−8𝑝𝑡0 −⋯    (8.53) 

Then from the expressions (8.51) and (8.52) 

𝑈(𝑥, 𝑝) =
𝐸

𝑝
[𝑒−𝑝𝑡𝑥 + 𝑒−𝑝(2𝑡0−𝑡𝑥) − 𝑒−𝑝(2𝑡0+𝑡𝑥) − 

−𝑒−𝑝(4𝑡0−𝑡𝑥) + 𝑒−𝑝(4𝑡0+𝑡𝑥) + 𝑒−𝑝(6𝑡0−𝑡𝑥) −⋯];        (8.54) 
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𝐼(𝑥, 𝑝) =
𝐼0
𝑝
[𝑒−𝑝𝑡𝑥 − 𝑒−𝑝(2𝑡0−𝑡𝑥) − 𝑒−𝑝(2𝑡0+𝑡𝑥) + 

+𝑒−𝑝(4𝑡0−𝑡𝑥) + 𝑒−𝑝(4𝑡0+𝑡𝑥) − 𝑒−𝑝(6𝑡0−𝑡𝑥) +⋯];         (8.55) 

𝑢(𝑥, 𝑡) = 𝐸[1(𝑡 − 𝑡𝑥) + 1(𝑡 − 2𝑡0 + 𝑡𝑥) − 1(𝑡 − 2𝑡0 − 𝑡𝑥) − 

−1(𝑡 − 4𝑡0 + 𝑡𝑥) + 1(𝑡 − 4𝑡0 − 𝑡𝑥) + 1(𝑡 − 6𝑡0 + 𝑡𝑥) −⋯ ];  (8.56) 

𝑖(𝑥, 𝑡) = 𝐼0[1(𝑡 − 𝑡𝑥) − 1(𝑡 − 2𝑡0 + 𝑡𝑥) − 1(𝑡 − 2𝑡0 − 𝑡𝑥) + 

+1(𝑡 − 4𝑡0 + 𝑡𝑥) + 1(𝑡 − 4𝑡0 − 𝑡𝑥) − 1(𝑡 − 6𝑡0 + 𝑡𝑥) − ⋯ ].  (8.57) 
Expressions (8.56) and (8.57) show that the voltage and current at 

an arbitrary intersection of a line x represent the sum of jumps, each of 

which appears at the moment of arrival at this point of the incident or 

reflected wave.  

 
a 

 
b 

 
c 

 
d 

 
e 

Fig. 8.6 
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The first jump (Fig. 8.6, a) arises at the moment 𝑡𝑥 of entry into this 

point of the incident wave (the first terms in the square brackets of the 

equations (8.56) and (8.57)), the second jump - through the time interval 

from the moment 2𝑡0 − 𝑡𝑥 the transition occurs, when the point x arrives 

the wave, reflected from the load (the second terms in the square 

brackets of the equations (8.56), (8.57)). The reflection coefficient of the 

voltage at the end of the line is “+1”, and by the current “– 1”, then the 

reflected wave arrives, is summed by voltage and subtracted by current 

(Fig. 8.6, b). The third jump occurs through the time interval from the 

moment 2𝑡0 + 𝑡𝑥, when the wave arrives at the point 𝑡 = 0, reflected 

from the source (third terms in square brackets) of the equations (8.56) 

and (8.57). The reflection coefficient of the voltage at the input of the 

line is equal to “−1”, and after the current “+1”. Thus, the reflected 

wave from the input is subtracted by voltage and current (Fig. 8.6, c). 

Here it should be borne in mind that the internal resistance of the 

source is zero. The fourth jump arises due to the time 4𝑡0 − 𝑡𝑥 when the 

wave arrives at the point x, again reflected from the load (the fourth 

plugs in the square brackets of the equations (8.56) and (8.57)).  

If the coefficient of reflection at the end of the line, as indicated, is equal 

to 1 at the current “−1”, then the reflected wave is subtracted from the 

voltage and is added to the current (Fig. 8.6, d). This process is repeated 

(Fig. 8.6, e). Thus, at the end of the line, the 

current is always zero, and the voltage is 2E 

over a period of time 2𝑡0, it is equal to zero 

for the same interval, that is, at the end of the 

open LL with no loss the voltage has the 

form of pulses (Fig.8.7). This property of the 

LL segment can be used in pulse shaper 

circuits.       Fig. 8.7 

 

Similarly transient processes can be considered in the short-

circuited at the end of the line, which connects to the source of constant 

voltage. 

In this case, the reflection coefficients of the voltage from the 

source of the input signal and at the end of the line are equal: “−1”, but 

by current “+1”. Therefore, at each reflection the voltage wave changes 

the sign, and the current wave does not change. As a result, the voltage 
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at the end of the line always remains zero, and the current continuously 

increases. The successive stages of the transition process are shown in 

(Fig. 8. 8, a - c). 

 
a 

 
b 

 
c 

Fig. 8.8 

 

In real lines with losses, the current in the line gradually 

approaches the set value. For a loss less line, the current increases with 

time along the stepped curve (Fig. 8, 9). 

 
Fig. 8.9 

 

 

Methodical instructions 

 

In the section '' Circles with Distributed Parameters '' you need to 

understand the basic difference between circuits with distributed 

parameters from circuits with lumped parameters: the values of currents 
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and voltages in circuits with distributed parameters within the allocated 

sections of these circuits do not remain unchanged, but change for the 

same the time from the intersection to the intersection. This feature is 

represent  telegraph equations, in which currents and voltages depend 

not only on time but also on coordinates. Of course, there are no falling 

and reflected waves in real LLs, these are only a convenient abstraction 

for a clearer understanding of the processes in these circuits. This 

abstraction is particularly useful in analyzing transient processes in LL. 

 

Literatura: [2 – 4], [9], [16] 

 

Questions for self-examination 

 

1. What electrical circles are called circles with distributed 

parameters? 

2. Record the telegraph equations of DL. 

3. What is the incident and reflected wave of voltage and current? 

4. How is the phase velocity determined in DL? 

5. What is the reflection coefficient? 

6. What are the known modes of waves and under what conditions 

they arise? 

7. What is KTW and KSW? 

8. Describe the transient process of current and voltage when 

switching on the DL to a constant voltage.  
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