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INTRODUCTION

The modern electronic use diverse circuits and devices, work of
which is based on commutations — instantaneous changes parameters of
elements, configuration of the circuit or input actions their
characteristic. Transient processes are arise in the circuit, as result
signals of definite form are formed and parameters.

Particularity of this item is analyses of transient processes in
nonlinear electric circuits, on its contemporary electronic and electrical
engineering is based. Including nonlinear circuits into context of the
manual allow to widen boundary educational material into region, where
known methods are non really or demand principle new approaches to
the analyses and calculations. Modern of today demands. Theory of two
ports is effectively used for analyze classical circuit of reactive filters,
which are widely spread in radiotechnic and radioelecthonic devices.
Methods of two - port theory are utilize in the circuit with distributed
parameters, which have the great meaning by development
nanotechnology, microelectronics, circuit engineering and making
devices on their principles.

Study of discipline «Theory of electric and electronic circuity
demands solid preparation in sphere mathematics, physics, methods of
analyze processes in complicated systems.

Material of a given manual is stated intelligible with sufficiently
accuracy, which allow students successfully acquire material of manual.



1. KLASSICAL METHOD OF TRANSIENT PROCESSES

ANALYSIS IN THE LINEAR CIRCUIT

1.1. General information abaut transient processes

In electric circuits distinguish modes:

1) is established, if currents and voltages do not change or change
periodically;

2) transitional - in the transition from one steady mode to another.

The transition process occurs as a result of commutations - jump-
like changes in parameters, configuration, circle structure, or input
influences. It is believed that switching occurs instantaneously, and the
transition process continues indefinitely.

The emergence of transients in circles with reactive elements

(inductance L, capacitance C) is due to the impossibility of
Li?

instantaneous change in the energy accumulated in them (w, = -
2
WC=%), which otherwise would correspond to infinite power

d
(== ),

In the absence of a group of reactive elements, transient processes
do not occur (occur instantaneously).

1.2. Laws of switching and initial conditions

First switching law: current in inductance can not instantaneously
change:
i,(0-) =1i,(0) =i (0+). (1.1)
Second switching law: the voltage on the capacitance can not be
changed instantaneously:
uc(0-) = uc(0) = uc(0+). (1.2)
In formulas (1.1) and (1.2): i;,(0—), ucs(0—-), i,(0), u-(0),
i;(0+), uc(0+) — currents in the inductance and voltages on the
capacitance immediately before switching, at the moment of switching
and immediately after switching respectively.



The value of currents and voltages at the time t = (0+), which
occurs immediately after switching, are called initial conditions. Initial
conditions are dependent and independent, zero and nonzero.

Dependent initial conditions are the currents and voltages that
change at the moment of switching, for example, the voltage in the
inductance u; (0+), and current in the capacitance i (0+).

Independent initial conditions — currents and voltages which do not
change at the moment of switching, for example, current in inductance
i; (04) and the voltage on the capacitance u.(0+).

If currents i(0+) = 0 and voltages u(0+) = 0, then they are called
zero initial conditions, and if they aren’t zero i(0+) # 0, u(0+) # 0 —
nonzero.

1.3. The general approach to the analysis of transients by the
classical method

By analysis of transients in electrical circuit by classical method in
common case consists a system of linear differential acuation of the n-th
order

d™x d*1x dx
anW+an_1W+---+ala+aox=
(1.3)
dmf m 1f df

where ay, aq,...a,, by, bl, bm constant coeff|C|ents which are
determined only by the scheme of the circuits and its parameters; x, f —
the output (current or voltage) and input (voltage source or current)
quantities respectively.

The order of the highest derivative in the equation (1.3) determines
the order of the circuit. So, for example, if n = 1, then this is the circuit
of the first order, etc.

Approximately the order of the circuit can be determined by the
total number of reactive elements of the circuit scimes.

The solution of the system (1.3) is written as a sum of free x,, and
forced x,, COmponents

X = Xpre + Xfor- (1.4)
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The component x¢,.. corresponds to the processes occurring in the
circuit due to the difference in the energies of the reactive elements in
one and the other established operating modes. In real circuits, in the
presence of losses, free processes are damping, i.e.

limy_,c0 Xrre = 0. (1.5)

The free component is defined as the general solution of a

homogeneous (without the right-hand side) differential equation

n n— 1
anZT:+a z_x,. +a1—+a0x—0 (1.6)
The solution of equation (1.6) has the form
Xpre = A1eP1t + AyeP2t 4o+ A ePrt = 30 AyePrt, (1.7)
where Ay, A,,..., Ag,..., A, — the integration constants, p;, ps,...,
Pk»---» Pn — the roots of the characteristic equation:
app™ + anop"t+ ot agp* + - +apta;=0.  (1.8)

The roots p;, of the characteristic equation (1.8) for passive electric
circuits are always valid, negative or complex with a negative valid part.
The imaginary roots correspond to lossless circuits, in which transient
processes do not attenuate.

The component x,, in equation (1.4) corresponds to the steady-
state conditions in the circuit after switching under condition (1.5). It is
defined as a partial solution of the inhomogeneous (with right-hand
side) differential equation (1.3).

n— 1dtn1

1.4. General procedure for calculating transitional processes by
the classical method

The calculation of transient processes is carried out in this order.

1. Make a differential equation for the post-commutation circuit
with respect to the quantities, that are subject to the laws of
commutation (current in inductance or voltage on capacitance)
analogously to equation (1.3).

2. Find the free component xs,.. of the transition process. To do
this, compile and solve the characteristic equation in the same way as
the equation (1.8). Substitute the roots of the characteristic equation into
the general solution (1.7) of the homogeneous characteristic equation
(1.6).



3. Find the forced component xs,, by calculating the post-
commutation circle in the steady state conditions.

4. Find the desired quantities as the sum of free and forced
components.

5. Find independent initial conditions (current in inductance,
voltage on the capacitance) by calculating to a commutative circuit in
the steady state conditions.

6. Find a constant of integration from the initial conditions.

7. Record the final solution of the output differential equation.

1.5 Transition processes in first-order circuits

Switching on rC - circuits for constant voltage. Let's analyze the
process of switching rC - circuits on a constant voltage (Fig.1.1)
according to the given calculation procedure.

(DE :Ic—l[tf

Fig. 1.1

By Kirchoff's law for the voltages for the circuit formed after the
key K is closed, we have ri + u.-E = 0.
Because

= oG
! dt ’
then

rCSCtuc =E (1.9)

From equation (1.9), taking %=p, E =0, we have the

characteristic equation:
rCp+1=0 (1.10)



The second term on the left-hand side of equation (1.9) has a zero-
order derivative, so it is replaced by:

uc=p°=1. (1.11)
The root of the characteristic equation
1 1
p= _E = —;, (112)

where T = r(C is the time constant.
Then the free component of the voltage on the capacitance
1

Upre = AePt = Ae’r, (1.13)

where A is integration constant.

In steady state regime for the aftercommutation circuit

i=0,uc=E,
that is the forced component
Ucfor = E.

Now the voltage on the capacitance for any moment of time, that is,
the general solution of equation (1.9), can be found as the sum of free
and forced components:

1
Uc = Ucfre T Ucfor = Ae T+ E. (1.14)
Independent initial conditions for this circuit are the voltage at the
capacitance at the moment t = (0+), ie immediately after switching . In
according second commutation low (1.2) we have
uc(0+) =uc(0-),
that is, you can find the voltage u.(0 —) = U, on the capacitance C, to
which it will be charged in the pre-commutation circuit. so
uC(O +) = uc(o —) = Uo. (115)
We substitute in equation (1.14) t =0 and u.(0) = U, from
expression (1.15):

Uy=A+E,
where
A=U,—-E. (1.16)
The final solution to the equations (1.15), (1.16):
1

uc = Uy —E)e T+E, (1.17)

. duc E - UO _1
lc = W = - e T (118)

The following regimes are possible in Figure 1.1.
1. Regime at Uy = 0. Then



1 E _1

uC:E(l—e T);ic =?e T,
This is regime of activation of the unchaged capacitor at constant
voltage E. The voltage exponentially increases from zero to E (fig 1.2,
a), the current at t = 0 the jump increases to E/r and then exponentially

decreases to zero (Fig. 1.2 b).

a b
Fig.1.2
2. Regime at E = 0. Then
1 Uy _1
uc =Uge 7; ic = —Te T

This is a free regime in the rC- circuit in which the capacitor,
charged to the voltage U,, is completely discharged with the
development of the transition process (Fig. 1.3, a). The current i,

changes the direction, the jump increases to the value —% and

exponentially decreases to zero (fig. 1.3, b).

3. Regime at E > U,. Then the capacitor is charged from the
voltage U, to E according to equation (1.17) (Fig. 1.4 a), the jump
increases from zero to and decreases to zero according to equation
(1.18) (Fig. 1.4 b).

. i
U
0 7 r
a b
Fig. 1.3



Fig. 1.4
4. Regime at E < Uy. Then the capacitor discharges from U, to E
(Fig. 1.5, a), and the current changes the sign, the jump increases to the
value U"r_E and exponentially reduces to zero (Fig.1.5, b). Here are also
the equations (1.17) and (1.18) for the voltage on the capacitance and
currentin it.

Fig. 1.5

Switching rC-circuits for harmonic voltage. The ratio for
transients according to the general calculation procedure can be
obtained the same as in the case of switching rC-circuit to constant
voltage at E = e(t) = E,,;sin(wt + @), where w, ¢ — the angular
frequency and the initial phase of harmonic electromotive force e(t)
(EMF).  Therefore, ri+uc-e(t)=0. Hence rc% +uc =
E,sin(wt + ¢). Here, as in formula (1.10) rCp + 1 = 0. Therefore,
relation (1.10) - (1.13) are correct.

In the steady state conditions for the post-commutation circuit, the
forced component is determined by the method of complex amplitudes.

Maximum circuit current

E, Enel® jwCE,el®

i = —= = - =
cm.for 7 .y .1 1+ jorC
JjwC
— wCEm ej(gﬂp—arctg corC).

J1+ (wrC)?
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Voltage on capacitance

. . 1 Eel®
Ucm.for = Icm.for - = - =
joC 1+ jwC
Em

— ej((p—arctg wrC)

B J1+ (wrcC)?

Now
1 En
Uc = Ucfre T Ucfor = A T+ ———=X
J1+ (wrcC)?
X sin(wt + ¢ — arctg wrC). (1.19)

For initial conditions in a circuit the expression(1.15) is correct.
With equations (1.15), (1.19) we find att = 0

Em .
Uy = A+ ——=rsin(¢p — arctg w1),
1+ (wt)?
where
En

V1+ (w1)?
The final solution of equations (1.19) and (1.20) is:
1 E
uc = Upe T + ———ou=X (1.21)
J1+ (w1)?

A=U, - sin(¢ — arctg wt). (1.20)

1
X [sin(wt + ¢ — arctg wrC) — sin(@ — arctg wt)e t|.
Here are the following modes:
Regime at U, = 0. This is the regime for switching the unchanged
capacitor to harmonic voltage. From the equations (1.20) and (1.21)

Em .
A = —————=sin(¢p — arctg wt) ;
J1+ (w1)?
E
U= —— X

J1+ (w1)?
1

X [sin(wt + ¢ — arctg wrC) — sin(¢p — arctg wt)e t|.

Obviously, the transition process is absent, since A =0. The
transition process takes place with A # 0. If ¢ = g + arctg wt then, the
integration constant became the maximum:

11



Em

V1 + (w1)?
Em

1
Ue = ——(cos wt — e_?).
J1+ (w1)?

The graph of the transition process is shown in Fig.1.6, from which
it is evident that the voltage on the capacitor can significantly exceed the
established voltage value. The maximum voltage is due to the half-life
of the harmonic voltage from the moment of switching.

and then

Uc fo

hoarn

U

c

Fig.1.6

Regime at U, # 0. Then at ¢ = arctg wt we have A = U,. There is
a transient process appies according to the equation (1.19):

1 Em .
uc = Upe 7+ ———=sinwt.

V1+ (w1)?

Graph of it is images in Fig. 1.7.

0

\J e \S !

Fig.1.7

The time constant and duration of the transition process. The
values 7= rC or t=L/r are called time constants. Measured in
seconds (5).

If



andwitht =0

_1y 1
et =——,
(7)==
then the component T is equal to the length under the tangent, conducted

to the exponential curve (see Fig. 1.2).
Att=r1
1
e tT=e1=0,367,
that is T becomes equal to the time for which the free component is
changed in e times, that is to 0,367 from its value at the beginning of
the interval.

The transition process is considered to be practically completed in a
while t;. = (3 —5) 7. During this time, the exponent reaches (95 -
99)% its value in the steady state conditions.

Qualitative analysis of transient processes. For circuit of the first
order, it is convenient to carry out a qualitative analysis of transient
processes without compiling and solving differential equations,
determining the currents and voltages on the elements:

- before the switching circuit with t = (0—),

- aftercommutational circuit with t = (0+),

- circuits in steady state conditiont — oo.

Example 1.1.
Calculate transient process for the circuit fig.E.1.8 by qualitative
method.

P e
e I.' i“
<>[; U.|==( r
Fig.E.1.8

In according calculation order

. . E . E
) t=(0-)h =iz =1~ ic=0;uc(0) = =%
. . E— 0 E ,
2) t=0+) i1 =10 = —:c( )= oy 27 0;
E
uc(04) =uc(0-) = -

13



3) t—>00,ll=lz=lc=0,uC=E
Graphic of transient process for the currents iy, i,, i are shown in
fig.E.1.9,a,b,c and for voltage uc - in fig.E.1.9,d.

il (0') iz (0')

0 i
a
i,
i(0-)
0 t
c
Fig.E.1.9
Problem 1.1.

Calculate and analyze transient processes in a given linear circuit
of the second order which source of constant EMF(fig. P.1.10) by
classical method. It’s given:

E=100V,L=1mH, C =10 mcF, r;, = 10 Ohms,

r, = 10 Ohms, r3; = 4 Ohms.

Find i.

Solution.
1. After commutation circuit is shows in fig.P.1.11. This circuit has two
nodes. The lows node is taken as basis, is counted from voltage u..
Let’s compile equation in according current Kirchhoff’s low for the
node 1.

i+ip+i,+i3=0 (P.1.22)

Here:

uc— E Uc

= 4 =—

1
At T3’

_ 1 diy . duc
i = Zjuc dt, (asue =, =15 )5 = €22 (P123)

14



Fig.P.1.10 Fig. P.1.11

Let’s substitute (P.1.23) into (P.1.22). We get
uc— E uc 1 duc
rn+r, 13 L dt

Differential relatively time t gives

d’*uc. 1 +1y+ 713 duc N 1
dt?  (ri+r)rsC dt LC

Let’s designate

=0. (P.1.29)

uc=0. (P.1.25)

n+rn+r 1 (n+mr)C 1
————=—=26; 1= ; = wy.
(p+mr)rsC 1 n+nr+r’ VLC
We receive from (P.1.25)
dzuC duc 2
ez + 26? + wyuc = 0. (P.1.26)

Equation (P.1.26) is differential equation for after commutation
circuit in fig. P.1.11 relatively value uc, which obey commutation lows.

T dzuc __ 2. duc
1. Introduce substitution: T =P

receive characteristically equation
p% + 26p + wj = 0. (P.1.27)
Ruts of equation (P.1.27)
pr=—-6+62—wip =-6—46%2—-wi  (P.1.28)
Free component voltage across capacitance is
Ucrre = AreP1t + AyeP2t, (P.1.29)
In force regime inductance L in (fig.P.11.) shunts capacitance C.
Therefore

=pLu.=p°=1, we

Ucfor = 0 (P.1.30)
2. Before commutation circuit is shown in fig.P.1.12. In before

commutation circuit inductance L shunts capacitance C. Therefore
uc(0) = 0. (P.1.31)

15



That is initial value voltage across capacitance.
3. Full voltage across capacitance in according (P.1.29), (P.1.30)
Uc = Ucpre = AreP1t + AyeP2l, (P.1.32)

l e r.
i Y, Ig
E n L C) %.(0)
’5 T
—}——

Fig. P.1.12

D

4. For finding integration constants A; and A, it is necessary to
supplement (P.1.22) else one equation. Find derivative of u, from
(P.1.32)

duc

- = AiprePrt + A,pyeP2t. (P.1.33)
Value
duc . ,
CW:I.C:Ig. (P134)
If uc(0) = 0, then at t = 0 we get from fig P.1.11
i1(0) = 0. (P.1.35)
It is obvious, according fig. P.1.12
E
i2(0-) = i2(0) = i2(0+) = —. (P.1.36)
2

For the loop E, 1y, C, 1, in fig. P.1.11 we get.
—E-i(r1+7r2)+uC=0.
Henceatt =0

i(0) = pir (P.1.37)

Then, according (P.1.22) at t =0 take into account (P.1.35),
(P.1.36), (P.1.37) we get

i(0) +i1(0) +i,(0) +i3(0) = —

E
+—+13(0) = 0. (P.1.38)
2

n+
and
oy _E Er,
i = S . S —
s rntr n (ry + 1)1y
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Let’s multiply (P.1.22) by C. Then, using (P.1.34), (P.1.38) at
t = 0, we get second equation for definition A, A,
i3(0) = C(A1p1 + Azp2). (P.1.39)
Now, using (P.1.131) - (P.1.34), (P.1.39), (P.1.37) we get equation
system

A1 + Az = 0,
Ery
C(A1py + Azp,) = T Enn
1+ 1)
Whence
Ery
Ay = ;
C(r, +12)(p2 — P72
A = Ery
2 C(ry + 1) (P — P72
Now
uC Erl plt Erl epzt =

= e J—
C(ry +12)(p2 — )72 C(ry +12)(p2 — T2

Ery
— (eplt — epzt).
C(ry +1)(2 — P72

That is so
. Uc
L1 = 7"3
then
Ery

i =
L Crs(ry + 1) (o — PO

(eP1t —eP2t) (P.1.40)

Methodic instruction

It’s necessary account of two kinds transient regimes in electrical
circuits: steady — state and transient condition by study material
“Classical method of transient processes analyses”. Currents and
voltages by steady — state condition aren’t change or periodic change.
Elements of transient conditions are absent in harmonic current circuits.
But steady — state condition may be include periodic transient processes
in circuit of non harmonic current (nonlinear or parametrical circuit).
Notion “transient condition” envelope any independent transient
regimes in such circuits. The given section study only one kind of

17



transient process, which take place in all elements of linear electrical
circuits.

It’s necessary to considered commutation lows, expound the
common order of transient processes calculation in according of a given
algorithm and examples. Study of this material demands repetition the
methods of mathematical analyses for solution linear differential
equation.

Material about analysis and calculation transient processes in
nonlinear circuit is given in this section. Particularity of nonlinear
circuits and methods of numerical calculations are considerate in this
section.

Literature: [ 1,2,6,8 — 10, 13 — 15]

Questions for self checking

1. Let’s name reasons of transient processes beginning.

2. Formulate commutation lows.

3. What are initial conditions?

4. Let’s name the base points of common order classical method of
transient processes analyses.

5. What is order of quality transient processes analyses?

6. What is integrate method approximation for the transient
processes in nonlinear circuit?

7. What is graphic integration method for the transient processes in
nonlinear circuit calculation?

8. What is method of phase plane for the transient processes in
nonlinear circuit calculation?

9. What is method of successive approximation for the transient
processes in nonlinear circuit calculation?

10.What is mating intervals method for the transient processes in
nonlinear circuit calculation?

11.What is fined increment method for the transient processes in
nonlinear circuit calculation?

12.What is method of state space for the transient processes in
nonlinear circuit calculation?

13.What are methods of averaging for the transient processes in
nonlinear circuit calculation?

18



2. OPERATIONAL METHOD OF TRANSIENT PROCESSES
ANALYSIS

2.1. Common information about operational method

Transient processes analysis foresees solution differential equations
of electrical balance in the circuit. For such solution the operational
method is widely used, which is based on Laplace transforms. By that
function of real variable t replaces by function complex variable
p = o+ jw. As result differential equations is substitute by algebraic
equations and after solution reverse transmission is gives real variable t.

For the first time this was shown by M. Ye. Vashcenko-
Zakharchenko of Russia in his monograph, Simvolichedkoe ischislenie i
prilozenie ego k integrirovaniu lineynykh differentsialnykh uravneniy
(Simbolic Calculus and Its Application to the Integration of Linear
Differential Equations) (Kiev, 1862). Independently of him, O.
Heaviside of England at the end of the century proposed the use of
operational calculus to the analyses of electromagnetic transients.
However, Heaviside did not set forth any mathematical principles
underlying the method. Further progress in the use of the operational
method has been due to many scientists, among them. V. S. Ignatovsky,
D. R. Carson, B. van-der Pol, A. M. Efros, A. M. Danilovsky, K. A.
Krug and A. I. Lurje, to name but few. Vashcenko- Zakharchenko also
the showed that the operational method could de applied not only to
ordinary linear differential equations with constant coefficients and their
systems, but also to linear equations with constant coefficients and
variable coefficients and to partial differential equations with constant
coefficients or, in term of electrical engineering, to the transient analysis
of distributed-parameter circuits.

The operation method consists in that the given univalued bounded
function of a real variable, say, time (that is, f(t)), called the original
function, satisfying Dirichlet’s conditions over any finite time interval
and equal to zero at t < 0 is transformed to another function, F(p), of a
complex frequency p = 0 + jw.

The new function is called the Laplace transform of the original
time function.
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As will be recalled, Dirichlet’s conditions require that over any
finite interval the function f(t) should be either continuous or have a
finite number of maxima and minima over that interval.

Transition from t to p is cold direct Laplace transforms (L —
laplacian).

LIf ] =F) = ff(t)e‘ptdt. 2.1)
0
Reverse transforms from p to t is cold reverse Laplace transforms
o+joo
1
-1 = = — -pt
L f®]=f®) 2 f F(p)e~Pldt. (2.2)
o—joo

Integral (2.2) is cold Bromwich integral. Function f(t)is cold
original, F(p) is image.

Let’s consider the some properties of Laplace transforms.

1. Image of constant A. In according direct Lap lace transform

L(A) = f Ae~Pt dt = A(—l)f derty =2
p p
0 0

That is way

L(A) = § and L(1) = % (2.3)

2. Multiplication of function f(t) by constant A. In according
direct Laplace transform we get

LIAf(D)] = f Af(t)e Ptdt = ff(t)e‘l’f dt = AF (p).

0
That is way

o LIAf (£)] = AF (p)
3. Linearity

LIf1(t) ¥ f2(0)] = ffl(t)e Pt + ffz(t)e Ptdt =
= F1(P) + F,(p),

LIf1® + f2(0] = Fi(p) £ F(p).

than

20



4. Image of derivative

{ [f @] f{d [f @]

(00)

e Ptdt = f e PUd[f(®)]. (2.4)
0
For integration by parts we have

fudv = uv—fvdu. (2.5)
Here v = f(t), du = (de™PY), than

LON_ erepiepys - f f@dEe™) =

— (0 - f f©e Pt (~p)dt =
0

= () p f f(DePtdt = — f(0) + pF(p).
0

That is way

d
TN p - o)

It’s evidence

d2
o B OSAORIO)

That is way, image of derivative of the any order from time
function is equal to product operator p to the degree of derivative order
by image of time function which precision about integration constant.

5. Image of integral fot f(t)dt. Accounting expression (2.1), we get

t 0o t
LLff(t)dt] =0j Ljf(t)dt]e‘pfdtz
= _%I[If(t)dt‘d(ept).

Let’s designation for integration by part

(2.6)
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ff(t)dt =u, d(e7P") =dv.

0
Asv = e Pt du = f(t)dt.
Then from expressions (2.5), (2.6) we get

ff(t)dt = — —[f f(t)dte_pt ] ff(t)e"’tdt —

f f(®e Ptdt = (p)

t
_F®
LLff(t)dt‘_ m—

t
F(p)
L[f f(t)dt]= pf.

That is way

It’s evidence

That is way, image of integral of the any order from time function

is equal to time function divisible by operator p to degree of integral

multiple.

6. Phase shift of original.

Function f(t —7) is named time shift relatively function f(t) at

interval 7 (Fig. 2.1). Property of phase shift is comfortable used by
receiving image of function, which are given different expressions
(piece — continuous function), for example,

complicated form signals passing through a linear electric circuit.

If L[f(t)] = F(p), then we have

LIf(t - )] = f f(t—t)ePtde =
0

= f ft—1)e PE=De Pt —1) =
0
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e[ f(e= 1) ePD de-1) = e PFG)

0
That is way
LIf(t =] =e™"F(p) 2.7)
WV/W/ B
Fig. 2.1
7. Shift.

Function f(t)e~ % is cold displacement relatively function f(t) at
angle a. In accordlng (2.1) we get

L[f(t)e ] = f f(t)e e Ptdt = f f(t)e POt = F(p + a)

That is way ruIe of shift
LIf()e** ] =F(p T o). (2.8)
That is way multiplication function f(t) by e*“¢ correspond
substitution in image p for p + a.

8. Similarity (changing of scale independent variable).
Let’s a is any positive number. Then, if L[f(t)] = F(p) we get

L{f(at)] = j e"Pt f(at)dt.

0
For integration by parts we designation: at = u, dt = %u. Then

o]

1
@) == [ e fau = 2 (2).
Analogically ’
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o 0

_ ot e Pt(—psint — cost) w
L(sint) = f e Psintdt = = ;
p?+ 1 p*+ 1
0
4 e Pt(sint — pcost)|’
L(cost) = f e Pt cos tdt = ( P )| R ;
p?+ 1 p?+ 1
0
or
. . _ p
L(sin wt) = m, L(cos wt) = m

Using properties of phase shift and similarity, we get images of
functions sin(wt — ¢) and cos(wt — @). As
L[sin(wt — ¢)] = L[sin wt cos ¢ -coswtsing] =
w .
= COSQDm— sSin @ pz T o’
L[cos(wt — ¢)] = L[cos wt cos ¢ + sinwt sinp] =
. w
= COS(pm + sm<pm.
9. Convolution of original (multiplication of images).
Convolution of continuous functions f(t) and ¢(t) is named
function ¥ (t), in according equality

t
W(t) = £(8) * p(t) = ff(r)go(t— Ddr.

0

Convolution has the same properties as multiplication:

a) commutativity: f * @ = @ * f;

b) associativity: (f * @) * = f * (@ *P);

c) reflexivity: (f + @) * Y =f xy + @ * .

That is way, convolution of function gives the same result
independently on convolution order.

Convolution theorem: multiplication of two function images is
accordance image of this function convolution.

Convolution of functions has graphic interpretation. Convolution
functions of f(t) with ¢(t) can by contribution as production of more
than two cofactors. Than convolution property is used successive to in
pairs rally around cofactors. It is shown convolution property grouping
can by perform in any order.
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Convolution functions of f(t) with ¢(t) can by represent
graphically (fig. 2.2).
fo

1)
S o0

0 T 0 T
b
fin) (1)
0 T 0 T
C
fit-1) P(t-7)
0 T T /n/‘r T
d
fit-0)-(D) [ plt-7)
0 1 T 0/ 1 T
e
o) = fit) L) =p(t)
0 [ t 0l t
f
Fig. 2.2
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Fig.2.2,a shows convolution of two functions f(t) and @(t), in
fig.2.2,b — functions f(t) and ¢(t) after substitution of a variable t to
t. Functions f(— 1), ¢(— ) are show in Fig.2.2,c. They are mirror
reflection of functions f(t) and ¢(t) relatively ordinate axes. Shift of
functions f(— 7), ¢(— ) to the right on value t is shown in Fig.2.2,d.

Product of functions f(t —t) * @(7) and f(t) * @(t —1) are
shown in Fig.2.2,e. Integration without from O to t gives areas, which is
shaded in fig. 2.9, e. They areas are equal to convolution
functions f(t) * ¢(t). Dependence convolution on time t is shown in
fig.2.2,f. From fig.2.9,e,f it is shown: Integrals of productions f(t —

7) * @(t)and f(1) * @(t — ) are equal.

2.2. The decomposition formula

Using the decomposition formula, you can find the original f(t) of
the known image F (p)
F Fi() _ bmp™ + by p™ " + -+ by
)= F,(p)  anp™ + apop™ 1+ -+ ag
where F; (p), F,(p) are polynomials of whole degrees p (m and n) at
the same time m < n. The coefficients a,, b, are valid and are
determined only by the parameters of the circuit. Polynomials F; (p),
F,(p) haven’t common roots, that is, the fraction (2.9) is non-
cancellable.
Expansion the fraction (2.9) into prime fractions. If p;, p,, ..., Pn —
different roots of the polynomial F2(p), then

2.9)

n
F. A A A
AN . R =) @i
F,(p) p=p1 P—P2 P—Pn &P Dk
Determine the coefficients of decomposition A, 4,, ..., A,.
Multiply fraction (2.10) by p Pk:
_FE®©@-pe)
( )Z - . Q.11
b D) :
We are heading p - pk Because Py 1S the root of the F,(p), then
PPk _ 2.12)

lim =,
p-vr Fo(p) O
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We reveal the (2.12) by the Lopital rule:
(p —pi)' 1
lim ~— =—. 2.13
b Be) | BeD @19
Left part in expression (2.11)

llm Z = A, 2.14
(P Pi) —— k ( )
that is, according to expressions (2. ll) (2.13) and (2.14) at p — py
Fy (px)
= Lk 2.15
D) 219

Then from equation (2.10) given (2.15) we have
n
F(p) _ Z Fy (pr)
F,(p) F3(pi)(® — pi)’

Determine the original from the image (2.16). Since F;(py) and
F,(py) are steel quantities, it is necessary to find the original expression

L Given equations (2.3) and (2.8, we have
1

P — Pk

(2.16)

= epkt_

So, finally
_ F;(p) - c Fy (pr) Pt — 1
= Ep klezl(pk) f _—

Expression (2.17) is a decomposition formula. If there are zero
roots among the roots of a polynomial F,(p), that is

F>(p) = pF5(p),
where the polynomial F;(p), hasn’t zero roots, then by the formula
(2.17) we obtain:

Fi(p) . F1(0) N F1(px) Kt —
e raS)) +Z{dp PP} .

p_

P=DPk
(2.18)

n
_ F;(0) N Fi (px) P
F5(0) © & picks3(pe)
It takes into account that

K= (0.
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d
(G PE@)] = BE) +PHE)],m = F0)

p=0
and
F3(px) = 0.
The decomposition formula (2.17) can be written in general form
g+joo n
1 Fi(p) F,(p)
f@) =5= f ePldp ~ Z Res ebt ,
2mj oo F,(p) = F,(p) p=py
where the excess Res is defined as
ReS [Fl (p) ept] — Fll(pk) epkt_
F,(p) ppe 12 (k)

In the table. 2.1 the originals of the some features and their Laplace
images are showed.

In the table. 2.1 shows the originals of some features and their
Laplace images.

Table 2.1
Original Image
1
1(t) —
14
o(t) 1
etat 1
pta
1 —at L
¢ P +a)
1
—at __ ,—bt -
72"~ | Grae+h
pcosy — wsiny
cos(wt + ) 7 T ?
) pcosy + wsiny
sin(wt + ) 7 T 0?

As already noted, the decomposition formula applies only when
F; (py) it hasn’t multiple roots. Indeed, for example, the image

. Fi(p) _ 1
=g~ erar

28
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the denominator of which F,(p), has two multiple roots p; = p, =
—a, by the formula (2.17) gives for the original expression:
1 1
f@© = 5e‘“t + 6e‘“t - 0. (2.20)
However, from the table 2.1 the original image (2.19) can be

obtained from the ratio
1 _ 1 (
(p+a)p+b) b-—a
by border crossing b — a:
1

l. — :1 —at __ —bt _
o o Tae D) G rar amr—a )=

—-at __ —bt)

2.21)
d (e7at — 701

—at

lim da =te %,

bra Ly g
that is, the result is incorrect.

The original image for the multiple roots of the denominator can be
found by the convolution property (Borel's theorem), the essence of
which is. Let the image F(p), be presented as a product

F(p) = Fi(p)F,(p). (2.22)

By direct Laplace transform (2.1)

F(p) = f f2(r) e7Prdr, (2.23)
SO 0
F@) = R@RE) = R®) [ f,0)e7dr =

[oe]

[ errmpmar 224)
0
By delay property (2.7)

e PTF (p) = fi(t —1).
Then the original image (2.7)
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t
Fp) = £(t) = f fi(t - D@ dr. (2.25)

0
The formula (2.25) is called the convolution formula. Obviously,
the functions F; (p) ta F,(p) are equal, therefore, performing similarly
the transformation (2.23) for F; (p), we get
t

Fp) = f(O) = f £ @f(t - 7. (2.26)

0
Let’s determine the original image (2.19) with the convolution
formula (2.25) with taking into account that
1

F(p) = F(p)F,(p) = b tartal
Given the properties of the shift operation (2.8))

— =e % =fi(t)=fo(t)
by the formula (2.25) we have
t

t
0=

t
f(t) = fe‘a(t‘f)e“”dr = e‘atfdr =e %t
0
).

0
which coincides with the relation (2.21

2.3. Operational substitution circuit of the basic circuit
elements

Active resistance. For active electric resistance r we can write
U, = i,r, (2.27)
where i,., u, — instantaneous values of electric current and voltage
(Fig.2.2,a).

i — L)
O ,' ,' - O O 1 I - O
\_/ \_/
U, U(p)
a b



And in operational form it is written as
uy = Up(p), iy = I (p). (2.28)
So, from expression (2.27) we get
Ur(p) = L(p)r.

The second property of the Laplace transform is used here - the
multiplication of the function f(t) on a constant value.

Thus, the operator image of the resistance r is the same resistance r
(Fig.2.2,b).

Inductance. For the inductance L (Fig. 2.2,a) the ratio between the
instantaneous values of current i; and the voltage u; can be written as

dlL
=L—.
he dt ,
L [ ;["(\0) L(p)
iL PL \p
o—Y YN o o—{1
U(p)
a b
Fig. 2.3

In the operator form it can be written similar to the ratio (2.28) as

the expression
u, = U(p), i, =1.(p).

Using the fourth property of Laplace transform (the image of the

derivative), we find
U (p) = pLI(p) — Li (0).

Here for a constant value L the second property of Laplace
transform (multiplication of the function f(t) on the constant value) is
taken into account also.

Thus, the operator image of the inductance L is a serial connection
of the operator resistance pL and the voltage source, which
electromotive force (e.m.f.) is Li;(0) and which in the direction
coincides with the conditionally positive current direction (Fig .2.3,b).

Capacitance. For capacitance (Fig. 2.4,a) it is possible to write the
relation between instantaneous values of current i and voltage u.
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t

0
1 1 1 1
— 0 0 0

t t

== P
C i PC N L)
o—ii o S e

UAp)
a b
Fig. 2.4

In operational form it is written as
uc = Uc(p), ic=Ic(p).

Using the fifth property of Laplace transform (the image of the

integral) we find
=294 Lo
Uc\p) = » nC c\P).

Here for the constant value 1/C, the second property of Laplace
transform (multiplication of the function f(t) on the constant value) is
applied, and for constant value u.(0) the first property of Laplace
transform (image of constant value) is used. And for the sum of terms in
expression (2.24) the third property of Laplace transform (linearity) is
used.

Consequently, the operator image of the capacitance C is the serial

. . 1 .
connection of the operator resistance °C and the voltage source which

uc(0)

e.m.f. is equal to and is in the opposite direction to the

conventionally positive current direction.

Thus, by all the elements of the electric circuit replacing with their
operator images, one can obtain an equivalent operator scheme (EOS) of
the circuit. So, for the circuit shown in Fig. 2.5,a we have such EOCS
(Fig. 2.5,b).
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2.4. Ohm’s and Kirchhoff’s lows in operational form

Ohm’s low. For the scheme shown in the Fig. 2.5,a we can write
according to the Ohm's law, where e is e.m.f. of voltage source
Uu-+u,+uc=e
or
t

di 1
ir+L—+— fidt=e.

dt C
L-i(0)
i r L i
: 7YY\
¢ T Qw
a b
Fig. 2.5
These equations may be represented in operational form (Fig.2.5,b)
as
uc(0)
rl(p) = —==E(p)
or
( +pL+ 1)1( ) = E(p) + Ly (0) — e 0
r+p C p) =£E(p I p
or
2
ZIP) =E®), ()= e(p) (229)
Where
Z(p)=r+pL+ pic — operator representation of electric resistance
of circuit;
E.(p) = E,(0) + Li (0) — (0) — operator representation of

equivalent e.m.f.
Expressions (2.29) are represented the Ohm’s law in operator form.
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Kirchhoff’s lows. Using the property of linearity, one can write
Kirchoff's law in image representation for currents and Kirchoff's law in
image representation for voltagges.

Kirchoff's law for currents is

Zik=0$21k(p)=0.
k

k
Kirchoff's law for voltage is

Zuk=0$ZUk(p)=0.
k

k

2.5. Transient processes analysis with equivalent operation
circuits

The general procedure for transient processes calculation with
using the EOS is following:

1) to determine the independent initial conditions (current in the
inductance, voltage in the capacitor) with calculation of the pre-
commutation circle;

2) to make EOS according to the rules considered for the post-
commutation circle;

3) to calculate EOS with any method of electric circuits calculation;

4) to find the originals of the searching values according to the
resulting images with using the decomposition formula or the Table of
originals and images.

Example 2.1.
To calculate the transient process with switch K closure in the
circuit (Fig. 2.6,a) according to given EOS — method.

A i Ip) & EKp)
—_

I_l L] h — pl.
C)C ‘ 7 C)g U (p) f”[ Uz(p)’

% F “, L-i(0)
a

1

Fig. 2.6
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Solution.
1. Independent initial conditions in before commutation conditions
(switching (K is off) are define in according expression

i2(0) = iL(O) = "+ 1

2. Equivalent operation circuit for after commutation circuit
(switching K is on) is shown in fig. 2.6, b.

In according voltage Kirchhoff low lets rout down system of node
equation for nodes 1 and 2 can be rout down in form

91192193 —92 Eg1 |
L[] _| » I
~92 92 +—| U] ~ | 1| @30
L —Li —
p [ Li,(0) pLJ
where
_ 1 _ 1 _ 1
g1 _rlagZ _r29g3 _7"3 .
3. From equation system (2.30) we get inductance voltage U, (p):
A
Uy(p) = KZ. (2.31)
Its evidence
911t 927193 —92 1
A= 1=++(+—)—2=
—9, gy +— (91 + 92 +93) | 92 L 92
pL
(2.32)
_ 91+ 92+ 93+ (91 +93)gapL
pL ’
E;
91t 92+ 93 ?91 1
Ay= 1| = —(g1+9:+ 93)Li2(0)—L +
- —Li,(0)— P
92 2 oL
(2.33)
Ey _Eg19: — (g1 + g2 + 93)i,(0)
+—09192 =
p p
Now
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_ Eg19:—(91+ 92+ 93)i,(0)
Uy(p) = =

1
(91+92+93) 7+ (91 +93)92p
bo by 1

ap+ta o p+%’
1

where

1
ap=(91+ 92 +93)Z;

a; = (91 +93)92;
by = Exg192 — (91 + 92 + 93)i2(0).
We get expression for original from the Table 2.1

a
_Q,

bo
U, (p) = uy(t) =y, = a_le G,
Here the first property of Laplace transform is used (image of
constant value), second property (multiplication by a constant value)
and seven property (argument shift) of Laplace transform are used also.
Another values in scheme of Fig. 2.6,a can be find analogically.

2.6. Transient processes at turn on a non-branched circle of
second order on a constant voltage

Let’s analyze the process of switching the rLC-circle on a constant
voltage (Fig. 7.2,a) according to the common calculation procedure. Let
the capacitor C is charged up to the voltage u.(0) in the pre-
commutation circuit (switch K turn on, Fig. 2.7,a), and current i; (0) in
inductance L equals zero. This is an independent initial condition.

=0

r L i
— 1 Y
E u(O)|7C
a b
Fig. 2.6
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According to the rules of operator image of elements obtaining, we
compile EQS for the post-commutation circuit (switch K is locked). The
scheme is shown in Fig. 2, 7, b.

Let’s calculate the scheme in Fig. 2.7,b.

It is obviously that

E _uc(0)
D E —u.(0) 1
I(p) =-L p1 - —— - (@34
r+ pL + p_C 1% + Zp + E
Let’s denote that § = — — attenuation coefficient, w, = — -
2L VLC
resonance frequency. Then from the expression (2.34) we get
E —u.(0) 1
I(p) = . 2 2=
L p* + 26p + wj
(2.35)
_E—-u.(0) 1

L (-pr)®-p2)’
where p; , = =6 +,/6% — w¢ are roots of equation
p>+25p+ w3 =0. (2.36)
Depending on the values of the roots p, , for circuit in Fig. 2.7, b
the modes are distinguish on:
- aperiodic (at § > w,); roots (2.36) — real and different, i.e.
i > J% or r>2 % =2p=r.,, Where r, =2p — critical
resistance;
- critical (at 6 = wy); roots (2.36) — real and same, r = r;.,;
- oscillatory (at 6 < wg); roots (2.36) — complex and conjugated,
r < T
Expressions for voltage in inductance and in capacitor have the
form
E —u,(0) 1

U,(p) = I(p)pL = L =
(@) =1()p I pp2+26p+wg

(2.37)
p

=[E —u.(0)] ————
£ = O]
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uc(O) uC(O) + E— uc(o) 1

1
1) pC  p LC  p(p?+28p+wd)
uc(0) 1
= + w§[E — u.(0)] P2+ 20p T 00" (2.38)
Expressions for the originals of the current are found by using the
expansion formulas for the current images (2.34), (2.35) and (2.36).
Expression for curent i(t) is defined according to the formula
(2.17). According to the formula (2.34) we have: F;(p) = 1; F,(p) =
p% +28p + +w? = (p —p)(p — pp), where p;, p, are defined
according to the formula (2.36);
n=2;
F,(0) =[(0-p)@—-pI'=p—p2+p0—p1=2p—p1 — P2
Fy(p1) = 2p1 —P1 — P2 = P1 — P2;
F3(p;) = 2p, —p1 — P2 = P2 — P1-

Uc(p) =

So,
it) = E- uC(O)( ! ePit + ! epzf> =
L . P1 (—O)Pz P2 — P1
—Uu
= m (eplt — epzt). (239)

Expression for the original of inductance voltage u, (t) is defind
according to the formula (2.17) also. And according to formula 1 (2.37)
we have
F1(p) = p; F2(p) = p? + 28p + w§; F3(p) = 2p — p1 — Pa;

F1(p1)h= P1; F1(p2) = p2; F2(p1) = p1 — p2; F2(p2) = p2 — p1.-

Then

u(0) = [F — ue(0)]

P1 ebit 4 Lelﬂzt) =
E (OI;1 — P2 P2 —P1
— L p1t _ Dot
1 — D, (p1e p2eP?t).

To determine the original of capacity voltage u.(t) with taking into
account that the denominator of the second term in formula (2.38) has a
root equals to zero and by using the decomposition formula (2.18),
according to which for the second term we obtain the following
expression:

Fi(p) = 1; F5(p) = p* + 28p + w§; F5(p) = 2p — p1 — p2;

F;(0) = 1; F3(0) = w§; F3(p1) = p1 — p2: F3(02) = p2 — P
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uc(o)

Because —— = u.(0), then

uc(t) = uc(o) + w(z) [E - uC(O)] X

X [iz +—————ePit ¢ —el’zf] =
w;  p1(P1 —D2) D202 — P1)
=u.(0) + w3[E — u(0)] i+ ! leplt—lepzt =
¢ ° w2\ P2

(ppePrt — P1ep2t)] =

1
= ue(0) + WF[E — uc(0)] L)

w§ (p1 — P2
E—u.(0
= uC(O) +E— uC(O) + p—C() (pzeplt _ plepzt) —
-
E—u.(0
E+ fcp() (poeP1t — pyeP2t). (2.40)

1 2
Here it is taken into account that

DDy = (—8+ /82 - wé) <—6— /62 - w§> = w?.

2.7. Analysis of transient processes by the second order circuit
turn on with constant voltage

For the electric scheme in Fig. 2.7, a the such processes are
distinguished.
1. At E = 0 itis a free process in rLC electric circuit, at which the
capacitor charged to voltage u.(0) is completely discharged and then
uc(0)

i(t) = ﬁ(eplt - epzt); (241
P1
u,(t) = ﬁ(mem — pyeP2t); (2.42)
u:(0) .
uc(t) = — (p2ePrt — preP2); (2.43)

Let’s consider the possible modes.

Aperiodic mode (6 > wg). Graphics of functions i(t), u, (t), uc(t)
are presented in Fig. 2.8.a,b,c respectively, where |p,| > |p.|. And
p1 <0, p, <0, that is the roots are valid, different and negative.
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1 (0)

p, . (0) | — e

Py p b

i,

p,u(0)

pl_pg \\ 4,@1}3{

e~
0 1
/HC
1 (0) ey =
p,ilC(O) /
Py h ¢

Fig.2.8

In Fig. 2.8.c u-(0) < 0. From Fig.2.8 it follows that the current
i(t) increases from zero to the maximum value, and then falls to zero.
The voltage u; (t) increases with jump at a switching moment t = 0
from zero value tou-(0) and then it decreases, passes through zero
(when the current i(t) reaches the maximum value), and then it
becomes negative, and then grows to the maximum value and falls to
zero value. Voltage u.(t) gradually decreases from value u.(0) to
zerow value, the capacitor is discharged and the transient process is
over.

Oscillatory mode (6 < wg). The roots p;, p, are complex and
conjugated:
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P12 =6 tjJwf — 62 = =8+ jwsre = —wpe™/?, (2.44)
where
_ 2 2. _ wfre
Wrre = w5 — 6% a = arcth . (2.45)

Then, according to the expression (2.41) and taking into account
the relation (2.44) we have
i(t) = ' u.(0) ' . [e(—5+jwfre) _ e(—a—jwfre)] —
(—6 — jwrre + o) — jWrre )L

(2.46)
uc(o) _5t e/ @fret — g7 JWfret uc(O) —St .z
- = — t.
ool e 2 ) e " sin ey
Similarly, according to the expressions (2.42) and (2.43) and taking
into account the relations (2.44) and (2.45) we have

w
u,(t) = 4 u, (0)e~9%¢ sin(wgyet — a); (2.47)
Wrre
@Wo =8t ¢
u.(t) = u. (0)e™°" sin(wpret + a); (2.48)
Wrre

According to formula (2.46) the plot of current change was
constructed i(t) (Fig. 2.9). The curent i(t) varies according to the
sinusoidal law, and the amplitude of the current drops by exponential

law. Exponent °() e~%t is the bypass amplitude of the sinusoidal

curve.
i
" (0)
o ﬁ,pl, e ot
0 7

1/(,(0) (—81

K ® ﬁ‘pl

Fig. 2.9

2. At u.(0) =0 it is a turn on mode of rLC-curcuit with an
uncharged capacitor on constant voltage. At the same time from the
expressions (2.31) and (2.33) we have
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() = —L(emat — gpat, (2.49)
(p1 —EPZ)L
u,(t) = > (p1eP1t — pyeP2t); (2.50)
. )
uc(t) =E + (pyeP1t — pyeP2t). (2.51)

1

Let’s consider the possible modes.

Anepioouunuii pexcum (8 > wg). The plots of fuctions i(t), u, (t)
and uc(t) are depicted in Fig.2.10. The capacitor C (Fig.2.7,a)
aperiodically charged from zero voltage to voltage value E. Current i(t)
in circuit is growing from zerou value up to maximum value (at the
maximum speed of voltage u.(t) change). Voltage u, (t) in inductance
at switching moment t = 0 grows with jump from zero value to E
value, then begins to decrease and passes through the zero value (at
maximum current value i(t)); then becomes negative and increases to
the maximum negative value (at the maximum speed of the current i(t)
change) and then goes down to zero.

Fig.2.10

Oscillatory mode (6§ < wg). At this mode similar to the formulas
(2.46) - (2.48) from the equations (2.49) - (2.51) we obtain

i(t) = e ™8t sin weye (1); 2.52
( ) wfreL fre( )a ( )
Wo —8t :
u, (t) = — Ee™®" sin(wfret — a); (2.53)
(‘-)fre
Wo —8t .-
uc(t) =E — Ee " sin(wfret +a). (2.54)
‘Ufre

In the Fig. 2.11 the curves of current i(t) and voltage u.(t) change
according to formulas (2.52)-(2.54) are presented. Here current i(t)
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changes as shown in Fig. 2.9. Voltage u.(t) according to oscillatory

T
law and tends to source voltage E. If t = fz””

TT .
Wfre, NAMeEly a = > then expression becomes as
T
fre

T,
uc( fzre) =E+Ee %2 ~2E.
So, voltage at capacitor can be reached almost in twice more than

source voltage E.

and wg ® Wpre, 6 K

iu
2E
1 -0t
i E+Ee
C .
El __f_ | \_ o m=—
7 | 5
EL ‘ | E—Ee™!
Oppe il ’
- ot
LN T
| T N
- -',)— -l
. oot
__E
mﬁ_(‘/
Fig. 2.11

2.8. Parameters of free oscillations

The oscillation process occurring in the rLC-circle is characterized
by the following parameters:
1) the time constant of oscillation process
1 2L
tTs T
this is the time at which the ordinate of the oscillatory amplitude of
free oscillations decreases in e times (t does not depend on capacity C);
2) duration of the oscillation process, namely, the transition
time t,,. for which amplitude of free oscillations I,,, decreases in 100
times. It is determined from the ratio
L,e%tr = 0,011,
where

43



In100 4.6
ty = 5 = T =4.67;

3) rate of the oscillatory process, namely, the rate of attenuation of
free oscillations, which is determined by the ratio of amplitudes of
oscillations at t; and t; + T, moments of time:

i(tl) _ Ime_&1 _
i(tl + Tfre) - ]me_‘s(t1+Tfre) =€

The quantity 6 =06-Tpe = 2

Wfre
attenuation decrement. For high-quality rLC-circuit (§ < w,) because
Wrre & wo We have

ST,

is called as logarithmic

where Q is quality or Q -factor of rLC-circuit

Q_p_ L1 L 2L wg
r |C v wIC 2rJIC 28°

2.9. Particularity of transient processes calculation by
harmonic influences

Transient processes calculation by harmonic influences can be
carry out by the straightly transfer from harmonic values to their
Laplace images (table 2.1). But more expediency is preliminary
transformation harmonic values into complex values and the next direct
Laplace transforms. Both theirs modes are shown on structure diagram
(fig. 2.12).

Reverse transfer from images to originals also carry out in two
stages:

1) at first through known operational images the complex of
instantaneous meaning value of originals,

2) and afterwards transfer from complex values to harmonic
functions. Correspond diagram is shown in fig, 2.13.
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e,,(1) = E,sin(wt+y)
€2(1) = E,.cos(mrry)

Direct Laplace transformation
E PSIny/+mcosy

[Opemtor equations of circuiz‘l

E l(p) = 5 5 Transition to
" " Sirﬁitgéosq[ complex images l Equation solving
En(p) = B, [Foa(p) = Fou (0 Fn ()]

Inverse I.apfaccl transformation

J/(:m (]I(D,l) :J(r;wl(l)-'-.l')gml(!) |

llfrzmq'ﬁfi' to originals

e, () =FE,e™= E,,,cos(mt+\y)+jE,,,sin(mH-\u)‘

Direct [,up!accl transformation

E j:nﬂl(t)
EP)= 525 Linl0)
Fig. 2.12 Fig. 2.13

Example 2.2

Calculate current i(t) and voltage across capacitance u.(t) by
switching rC-circuit to harmonic voltage e(t) = Ej,,cos(wt + ) in
circuit fig.2.14.

Se :I’” i(1)

ult)|
()E 1 (0)}]

Fig. 2.14

11}
a

Solution.

1. Let’s considered solution by direct application Laplace
transforms.

Let’s find independent initial conditions in before commutation
circuit.

Let’s assume uc(0) =0
Let’s compile equivalent operation circuit (EOC) for the after
commutation regime, substituting EMF e(t) for
pcosy — wsiny
Lle(®)] = E(p) = Em :

pZ + (1)2
We compile EOC in fig. 2.15.

(2.55)
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C)E(p) uol[] 2

Fig. 2.15

Using voltage Kirchhoff’s low (VKL), we get

1
I(p)(r +p—C)—E(p) = 0. (2.56)
Solution of equation (2.56) gives

¥
p? ePw 3 E—mcosd) p(p —wtdy))
p? + w? _|_i_ r (p? + w2)( +L)’
PTiC p M PTiC
1 E, p ePw
U = I —_—— =
C(p) (p) pC rC pz + (IJZ i
£ g PTiC
—wt
= r’g cosy P Ld EX (2.58)
(p? +w2)(P+ﬁ)
Let’s define originals of current and voltages, using expansion
formula and property phase lag (2.7)
E
i(t) = 2 —0 ——x (2.59)

T J(wrC)?+ 1
X [wrCcos(wt + P + a) — e_% sin(y + a)];
uc(t) = N (2.60)

J(re)? + 1
t
X [sin(wt + Y +a) — e rcsin(y + a)],
where a = arctgi.
wrC

Ep
1) == (2.57)

2. Let’s considered solution by double transformation into complex
and operation forms.

Let’s substitute in after commutation circuit all elements by
complex values
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e(t) = Eme]( wt+)) — Emeﬂl) = Emejwt;Zr =r; ZC = ](A)LC (261)
Expression (2.61) can be represented in operational form

En
Ep) =i i) =1iZe@) =2z (26)
Using (2.57), (2.58), we get operation current and voltage
Em 14
I(p) = B (2.63)
GRS (p + ,,C)
E.
Uep) =~ : (2.64)

(p—jw) (p + %)

Expressions for operational images of current (2.63) and voltage
(2.64) are considerable simplily, then (2.57), (2.58). Originals of
expressions (2.67), (2.68) gives complex instantaneous meaning current
and voltage

1
E. ) . - _t
Im(t):_m J 1 e]wt+1—TCe rC | =
Jot e T
rCE,, jorCel®t+e7rC
= = (2.65)
r(jorC + 1) rC
_Im_ 1 [wrCej(“’t+¢+ 7w) 4 ore efW-a)].
r w/(a)rC)2 +1
1 . 1 t
Un(t) = —rg 1 el®t + — e C|= (2.66)
= E—m elwttd—ayy _ ,=5¢ ej(lp—al)]’
J(r)? + 1
where
= arct C= T t ! =
a, = arctg wr > arcgwc_2 a.
We pass from complex values to real form
1
i(t)=———=x (2.67)

w/(a)rC)2

X |wrCcos(wt + Y +a) —e rC sin(y + al)],
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m

J(rd)? + 1 *

t
X [sin(wt + Y + a) — e rcsin(P + aq)],
what is coincided with expressions (2.59), (2.60).

uc(t) = (2.68)

Problem 2.1.

Calculate and analyze transient processes in a given linear circuit
of the second order which source of constant EMF (fig. P.1.10.by
operational method.

Solution.

1. Let’s find independent initial conditions - induction current i,(0),
voltage across capacitance u.(0) — for before commutation circuit in

Fig. P.2.1 (see Fig. P.1.11).

E

i2(0) =i, (0) = E’ uc(0) = 0.

2. Let’s compile equivalent operational circuit for after
commutation network (Fig. P.2.1).

|

Ip) 7 :
oK
1o Lo§ L) “P
—2 |Li0) u.(0)
T l d p
Fig. P.2.1

3. Let’s calculate circuit in Fig. P.2.1, using node voltage method
(NVM).
For the node 1 we get.

E uc(0)
1 1 1 7 Li;(0) "
Z+—+pC)U(p) = - :
<r1+r2+r3+pL+p ) c®) Ty pL * 1
pC

where from
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E uc(0)
P _Lp®_ "
T+ pL 1
Uc(p) _ pC

L(p) =

" T 1,1,
(r1+r2+r3+pL+pC)r3

After manipulation we get, using earlier received designation & and

Wo
—Ery 1

I = . . P.2.1
1(P) r,r3C(ry +13) P2+ 28p + Wi ( )
4. Let’s find original for (P.2.1), using expansion formula
n
F, (P
f@O) = Mepkf. (P.2.2)
L F (P
Let’s represent (P.2.1) in form
I (p) = —En 1
1P rr3Cri+12) (0 —p) @ —p2)
where p,, p, are defined from (P.1.28)
F,(p) = (p-p)(-p2); F2(p) = 2p-p1-p>.
Then
—ET‘l 1
i1(t) = ( ePit ¢+ ePzt) —
! 1o13C(ry + 12) \(p1 — p2) (pz — 1)
(P.2.3)

— En (eF1t — eP2t),
1a1r3C(ry +12) (P2 — P1)
It’s shown current i, (t) coincide with current (P.1.40).
We calculate ruts p4, p,, use (P.1.28)
. (ry +,)rsC (10 +10)4-10-107°

R T o 10+ 10 + 4

5= ! _ ! =15-103;

2t 2-3333-1075 ’
L= ﬁ = 108¢72;
LC 1-107°-10-10

=33,33-107°c;

w =

p1’2 = —6 i ’62 - (1)% = _15 * 103 i \/(15 ' 103)2 - 108 =

= —15-10% + 11,18 - 103;
py =—15-10% + 11,18 - 103 = —3,82- 103¢c™1;
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p, =—15-10%3—-11,18-10% = —26,18- 103¢™1;
Let’s substitute meaning of parameters into expression (P.1.28) for

i1(t)

. 100-10
L) = — X
10-4(10+ 10)-10-1075(—26,18-103 + 3,82 - 103)
(P.2.4)
% (6—3,82-10315 _ e—26,18-103t) — _59(6—3,82-1031: _ e—26,18-103t)A.
Let’s designate
1
=|—|=—=—==0,262-10"3¢;
1T 382-10° ¢
1
= |[—| = =—=——=———==10,038-10"3¢;
f2 |p2 26,18 10° ¢
Rerate (P.2.4) in form
t t
i,(t) =-59 (e 0262:1073 — p 0,038-10_3) (P.2.5)

Using (P.2.5), construct graphic of current i, (t) (Fig. P.2.2)

Fig. P.2.2
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Methodic instruction

Beginnings study section “Operational method of transient
processes analyses”, necessary acquaintance from direct Laplace
transform and its properties, give grant attention to expansion formula,
as basic means of finding original from operation image.

After that to study methods of equivalent operation circuit
construction, master the common order of operational method of
transient processes calculation. For example it is expediency to
considered transient processes in second order circuit.

Literature: [1] — [5]; [9] — [11].

Questions for self checking

1. What is essence of operational method of transient processes
analyses?

2. Written down expressions for direct and reverse Laplace
transforms.

3. Formulate properties direct Laplace transform.

4. Explain expressions of expansions formula.

5. Compile equivalent operational circuit for the network of first
and second order.

6. Give common order of transient processes with help equivalent
operational circuit.

7. What is peculiarity operational transient processes calculation
by harmonic influences?

51



3. CIRCUIT OPERATIONAL FUNCTIONS
3.1. Notion of circuit operational function

In the electric circuit the relation of the output value x,,;
(reaction) with the input value x;, (action) in the general case is
presented as

dmxin dm_lxout dxout
amdt—m aAm-1 W + ...+ a, dt + AoXoyut =
(3.1)
d"xl-n d"_lxin

dxl-n
:b —+b +...+b1?+b0xl’n,

moden T qen-t
where ag, ay, ..., amy, bg, b1, ..., b, are the real coefficients which
are determined by the electric circuit scheme and parameters of
its elements.

If X, = Xin(®), Xour = Xoue(®), then in the operat form
from the relation (3.1) we can write:

(amp™ + Up-1p™ ot agp + ao)Xout(p) =
= (bpp™ + bp_1p™ ' + .. + bip + bo)Xin(p).

The operational function of electric circuit (OFC) K(p) is the
ratio of the image of the output value to the image of the input
value at zero initial conditions:

Xout(p) _

K(p) Xin(p)

b,p™ + by 1" '+ .. +bip+by, N(p)
A p™+ A p™ 1+ .+ apta, M)
Here n < m and OFC is the rational fraction. The polynomial
N (p) has roots py1, Poz2s ---» Pon » Which are the zeros of function
OFC. The polinomial M(p) has roots p,, Ppz, ..., Ppm » Which

are the poles of function OFC. So,
_N®)  (®—po1)® —Doz) - (P — Pon)

K(p) =

M®) " (p=pp1) (P —DPp2) - P — Ppm)

(3.2)

(3.3)
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b
where K = —=.

am
That is the function OFK and hence the circuit itself are
completely determined by the values of their zeros and poles on
the complex plane.
The operational function of electric circuit OFC are used to
describe the electric circuits without independent energy sources
at zero initial conditions.

3.2. Variety of circuit operational function (COF)

Let’s describe the scheme is presented in the Figure 3.1.

1 1,(p) I:(I’):
Circuit

U, .
\7) section

o
1

Fig. 3.1

The operational function of electric circuit is the ratio of
operational currents or voltages of some element of electric circuit to the
operational current or voltage in the input of th electric circuit.

There are input and transient OFK functions:

1) the input OFK function is ratio of the operational current or
voltage in the input clamps of the electric circle. That is the operational
input resistance Z;4 (p) and its conductivity Y;, (p):

_ U1(P). _ I;(p)
Z11(p) = m, Y1:(p) = U.(p)
So,
Z11(p) = m;

2) the transient OFK function is the ratio of operational currents or
voltages in different clampes of electric circuit. That is the transient
operational resistance Z,;(p) and conductivity Y,;(p), and
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operational transient coefficients over current K;,,(p) and voltage

Ky21(p): - -
Ux(p L(p
Z = ; Y = ;
21(P) 111((}9)) 21() Ul}(?))
p 2P
K =2z =
121(P) L)’ Kyo1(p) = U1(P)
1
Zu(P)#
“ YZl(p)
Example 3. 1
Define circuit operation function for the circuit (fig.E.3.2)
A
i,
u, r =C |,
Fig. E.3.2

Solution.
Let’s represent elements of the circuit in operation form
U,(p) r rpc + 2
Z11(p) = = =r ;
1, (p) rpC+1 rpc+1
I (p) 1 1 1+4+rpC
Y1:(p) = = -
I{]l((p)) le(p) le +7rpC’
p r
Zy(p) = 2 = ;
L(® 1+4+mC C p+%
_ I (p) _ Y11(p) 1 p
) =y oy T Trme 7 2;
L) _ p
K1 (p) = ;
L .1
U,(p) ’ +rCl 1
2P r
K = = = — 3
v21(P) U(p) r?pC+2r rC 2
Ptic
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This example shows COF depends only on circuit structure and
don’t depends on input action.

Problem 3.1.
Calculate circuit operation function (transference admittance) for
the given linear circuit of the second order (fig. P.3.1).

Solution.
1.Let’s find circuit operation function (transference admittance).
L(p) Ay
Yo1(p) = =-—="1(p) (P.3.1)
2t Ui(p) Agy °

that is operation transference admittance

Let’s compile equivalent operation circuit (fig.P.3.2).
Ken

Fig. P.3.2

Designating basis node, rout down matrix node conductance
(MNC) for the nodes 1, 2

[t ! ]
A_|r1+r2 T+ |
- 1 1 1 1 )
- +—+—+pC

rn+r, rn+r, 13 pL

Where from

A= ! ;A= ! +1+1+ c
12_r1+r2’ 11_r1+r2 r3 plL P&
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AsY;(p) = % then

1 1
Y51 (p) = =
1 1.1 ~
(r1+r2)(r et +pL+pC)
_ (r, + rz)r3pL 1
(ry + ) [rspl + (ry + 12)pL +L(7”1 + 113 + (1 + 1)r3p2LC] 13
_ p _
(A r)nlCp? 4+ (r +r +r)lp+ (1 A1)y
1 14
T A€ o At T

R (T Pl tIc
Using received designation, we get
1 p
Y- = . .
21(P) (ry + 12)13C p? + 28p + 00(2)
Circuit operation function can be transferred into circuit complex
function (K (jw)) by substitution operator p on image frequency jw

K(jw) = K(p)

For COF can be right
K(p) =K(o+jw) = R(o,w) + jX(o,w) = K(o, u))ej‘p(""”), =0,

where R(o, w), X(o, ) — real and image part of K(o + jw); K(o, w),
@ (0, w) —module and argument of COF. We remind of p = ¢ + jw.

Components R (o, w), X (0, ), K(o, ), (o, w) of COF K(p) are
functions of two variables o and w. That is way their can by given
surfaces. At ¢ = 0 components COF become components of circuit
complex functions (CKF), that is way frequency characteristics.

Circuit operation functions of linear circuit with finite number
elements can by always represent fractional — rational functions in form
relations determinants N(p) and M(p) (see 3.3). Zeros and poles of
COF can be real or in pairs conjugate complex numbers. If they are real
numbers processes in the circuit are periodic, if they are complex
numbers — oscillator characters. In ideal passive circuit with only L-,C-
elements free oscillators their amplitudes aren’t decries, in real circuits
amplitudes decries in time
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1)
2)
3)
4)
5)

3.3. Transient processes analyze by of circuit operational
functions

Circuit operational functions are widely used for analyze processes
in electrical circuits.
It is shown from (3.2)

Xout(p) = K(p)Xin(p)- (3-4)

So, the reaction of electric circuit X,,;(p) on the arbitrary input
action X;,(p) can be determined, if we know corresponding OFK
function.

From expression (3.4) follows the following order of analysis:
make an equivalent circuit scheme of electric circuit;
to calculate the corresponding OFK function;
to find the operational image of input action X;,, (p);
to calculate the operational image of electric circuit action X, (p);
to determine the original of the found value X,,.(p) according to the
tables or expansion formulas.

As an example, let's consider the passage of signals through an
electric circuit with OFK function.

Example 3.2.
The impulse of exponential form is applied to the input of electrical
circuit (fig. E.3.2)
Uip (t) = Uppe™®. (3.5)
Find current of capacitance i, (t).
Solution.
Um

1. Image of the input action U;,, (t) = e
1

U

1L
1L
I

Fig. E.3.2

2.Image of the capacitance voltage
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Un
Ue®) = r e+ proy

3. Image of the capacitance current
UnrpC
Ie(p) = =
(p+a)ipC+2)
4. Characteristscal equations and its ruts

. (3.6)

2
@P+a)pC+2)=0,p =—a, p,=——

rC
5. Original of capacitance current
2t
et 26 7C

io(6) = Up——) (3.7
r(e-7z)
Example 3.3.

Switch K is closed and apply the constant voltage u;,(t) = E to
the input of the circuit (fig. 3.4). Define current i;(t) using circuit
operational functions.

O

i.(1)

Fig. 3.4
Solution.
1. Image of input influence (table 2.1)
E
Lluin ()] = L(E) = Upn(p) = > 3.5)
2. Image of inductance current (table 2.1)
I,(p) = Er, ! 3.6
L\p _(r1+r2)L 4 Ty ] (3.6,
PP (ry + 1)L
Or
I,(p) = K——,
AR
where

58



K = Er, 1= Ty 37)
NGCERDOA Pt= .

NCEEDOA
That is way original
E Ty,
Mozrﬁ—e<MMﬂ. (3.8)
1
Input action is shown in fig. 3.5, graphic i, (t) — in fig.3.6

Uy,

Fig. 3.5 Fig. 3.6

Example 3.4
Calculate current i(t) in the circuit (fig. 3.7) which is connected to
voltage (fig. 3,8), using circuit operational function.

i)

u(f) y(([) e’

Fig.3.7

At interval 0-t; input voltage is changed exponentially
u(t) = Uge %, (3.9)
If reaction is current i(t) and influence — voltage u(t) then
operation transfer admittance

Ip) U 1 pC 1 p
Y(p) = = : = =—- . (3.10)
Up) T+piC Ulp) mmwC+1 r p+%

Operation image of input influence can be founded through direct
Laplace transform (2.1), changed upper bound of integration

ty t1
UGp) = j u(t) ePtdt = j Uyeat optar =
0 0
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ty

U
= Uof e~(PHatge = . ¢ [1—e @] (3.11)

+a
0

Now in accordance (3.10), (3.11) we get

1 p U _
1) =Y@)U(P) =~ ——F —— [e"®*4] =
r p+a
P+
_% P p

e~ (POt (3.12)

1 B 1
"Ne+5)e+a) (p+p)@+a)
Original of image (3.12) is designation for every item separately.

For the first item in square brackets we get ®1(p) = ( L

——n
pt+=c)(p+a)

according expansion formula (2.17) we get
1 1
F@)=p @) =@+ D@+0;n=2p=——-p = —a;
! 1
F,(p) =2p tta
Then original
1 1 _t
Lo (p)] = I (ae‘“‘ - rc) =d,(t). (3.13)
o — ﬁ r
For the second item in square brackets we get
D,(p) = 1 P e~ (Pra)ty — e~ 1, (p)e~Ptr.
(P + ﬁ) (p+a)

Were from in according phase lag (2.7) we get
D, (t) = e7 1Dy (t-1y) - 1(t-ty) =

e~ at1 1 _t-t1
= T [ae-“(t-fﬂ——ce T ]-1(t—t1). (3.14)
(l—ﬁ r
Now, regarding (3.12) — (3.14), we get original current i(t)
0 = Lo, - o,0] = 2] caty _ 1 2
= — — = —_— —_— T -
() = 2[04(6) = B,(0)] = 2 — [ae™ s — e
o= —=
rC
e—atl

a(t-ty) 1ttt
—alt-t) — —eTrC [ 1(t-ty) ¢
ae rCe T ] (t-t1)

“Trc
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Ift <ty, by 1(t-t;) = 0 we get
() =Vo 1 (pmat; _ L ,—g) ___Uo -£ —at
i) =~ pa (emetr — ~eve) (e7re —arceat). (3.15)

r(1—-arC)
Ift >t;, by 1(t-t;) = 1 we get
i =& 1 (et —ie_%)— e—at
T 1 rC o — 1
rC rC

! t_zl ]}— 0 ( _tC C _“t) 3.16
_— T = rC — . .
rct r(1—arC) ¢ ar-e (3.16)

Where from, if t = t;
. UO (L—a)t G
=——— |1-e\rC 1 C =
i r(l—arC)[ e ]e "
= L(e_% —e % )
r(1 —arC)
From (3.15) if t - O we get i(t) — 0.
Operate image of input action can be receive represented input
voltage as difference of simplest actions

u(t) = us (-uz(t),
where u4 (t) can be expressed in according (3.9)

[ae_a(t - tl) —

uy (t) = Uge™* - 1(2), (3.17)
and u, (t) is shifted at t; exponent
uy(t) = Uge e~ t-t) - 1(¢- t,). (3.18)
From (3.17) and table 2.1 we get
U () = —
1 p - p +a5
then from (3.18) in accordance (2.7) we get
U,(p) = Y% e ¥tig=Pty
2 pt+ta

and as result

Uo
— _ =—— [1 = e Wta)ty
U®p) = Us(p) — U (p) ero([ e ],
what is coincide with (3.11).

Problem 3.2
Calculate and analyze of exponential video impulse passing in a
given linear passive circuit of the second order (fig. P.3.1) with help
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circuit operational function: u(t) = Ee~*t, where a = 0.3|Pminl, Pmin
— lesser module root of characteristically equation. Find current i, (t).
Solution.
Operational image of input signal

Ulp) = :
pta
Then image of output current 11(p), using (P.3.2) and (P.3.1)

p
I =U(®)Y. =F : =
1) = U ) = B G e + 280 + WD)

p
G+ rnC G- 030 -0 7 )
Here a = 0,3|ppmin] = — 0,3 p1
Let’s find original of (P.3.3) by expansion theorem, using formula
(P.2.2). Here

(P.3.2)

F,(p) = (p = 0,3p)(p — ) (@ — p2). (P.3.4)
Then derivative of (P.3.4) will be rout down as

F;(p) = (@ —p)@—p2) + (p — 0,3p1)(2p — p1—D2).
Original from (P.3.4) is equal to

0,3p4
i () = 0,3p1t 4
L(t) (ry + 12)73C —0’7P1(0'3P1—P2)e
P1 pit D2 pat| —

— ¢ e
0;717%(191 —D2) (p2 — 0,3p1) (P1—12)

pP1—D2
= 0,429 ———=—¢03P1t | 1 429¢P1t —
(r1 + )1r3C(p1—Dp2) ( ppz —0,3p;
2
P2 pat), (P.3.5)
pz - 0'3p1

Let’s substitute into (P.3.5) numerate values. We get
1
i1(t) = X
46 (10+10)-4-10-1076(—3,82- 103 + 26,18 - 103)
04297382 10° +26,18-10%) - e~0338210% .
X
’ —26,18-103 +0,3-3,82-103
—2618- 103 - ¢—261810%t
—26,18-103+0,3-3,82- 103]
t t t
=—2,14-¢ 08731073 4 799.¢ 02621073 _585.p 00381073A,
Graphic i(t) is shown in fig. P.3.3

+1,429 - @7382107°¢ _

= (P.3.6)
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6,25
50

3,75

-2.14

Fig. P.3.3

Problem 3.3.

Calculate and analyze of exponential video impulse passing in a
given linear passive circuit of the second order (fig. P.3.1) with help
Duhamel integral (time method) by input action u(t) = Ee~%¢, where
o = 0.3|pminls Pmin — l€sser module root of characteristically equation.
Find current i, (¢t).

Solution.

Lets used the following form of convolution integral (Duhamel)

t
Foue (D) = f fin(t =D a(v)dr. (P.3.7)
0

Here:
( fout () = i1(t);

h(t) = hy,(t);ift = 0 hy, (t) = 0, according to (3.33);
!fm(t) =, (t) = Ee™ ™, fi,(t — 1) = uy(t — 1) = Ee~*"9; (P.3.8)
1

(ry + 12)13C(P1—D2)

(p1eP1T—pyeP2").

| a(®) = ay, @: ay, (0 =

After substitution (P.3.8) into (P.3.7) we get
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t

1
i(t) = f Ee~at-D
0

(ry + 1)r3C(p1—p2)

(prePiT—p,ePeT)dt =

Ee—(xt

(A 1)sC(py—

f et (p1eP" —pyeP2t)dt =
p2) ]

Ee™® (o+ps) t (a+py)
= atp)Tgr — atp)t .| =
(ry + 12)13C(P1—P2) P f ¢ TP f ¢ N
0
—at t t
- Ee [ elarpt| _ P2 (aipy)e ] =
(ry + 12)13C(p1—p2) [ + Py 0o atp2 0

Ee~ at

(7"1 + 1)r3C(p1—p2) {0‘ + D1
__P2 [e(a+pz)t 1]} —

[e (0(+p1)t - 1]

oa+p,
= E [ pl (eplt —_ e_at) —
(ry + )1r3C(p1— Pz) a+pq
~ + ” (eP2t — e‘“t)] = (P.3.9)
2
= E [ pl eplt [— L epzt —
(r, + 7"2)7"3(:(19119—192) O‘;' P1 a+po
_ 1 _ 2 —at| —
a+p, a+ pz) €
= E [ pl eplt [— p—zepzt +
(r1 + 7)1r3C(p1—p2) Ip1 — 0,3p4 p2 — 0,3p,
(pl - p2)0'3p1 0 ,3p4t E
(p1 — 0,3p) (P2 — 0;3291) (7’1 + 1)1r3C (P — Pz)
X (1,4296:1’1t S - S— A 0,429Me0'3p1t).
p2 — 0,3py p2 — 0,3p;

It is shown, (P.3.9) coincide with result by operation method. There
for we get identical graphic (fig. 3.9).

64



Fig. P.3.9

Methodic instruction

Its necessary realize essence circuit operational function and there
variety, master order of calculate and analyze transient processes with
help circuit operational functions. Theoretical material is fixed by
examples of calculations for pass signals of composite form through
electrical circuits.

Literature: [1] - [4]; [9]; [14] - [16]
Questions for self checking

1. What are circuit operational functions? What are varieties of
them?

2. What is connected circuit operational function with circuit
complex function?

3. Give an example of transient processes calculation with help
circuit operational function.
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4. METHOD OF CONVOLUTION INTEGRAL
4.1. Superposition method in transient processes theory

If to a linear electric circuit the complex action x;,(t), which
equals to the sum of simple input actions x;,, , (t) is applied
Xink (t) = Zk Xin,k (t),
then the reaction of the output electric circuit x,,;:(t) equals to the
sum of reactions on each of the simple actionsx,,; . (t) separately
Xink(t) = Xk Xin i () (4.1)
where x,,,.(t) is electric circuit reaction on the simple action x,,;  (t) .
It is convenient to present the complex action as the sum of such
simple actions, which reactions definition does not require much effort.
Such actions are called typical.

4.2. Typical impulse actions

In practice, for the analysis of electric circuits the two types of
typical actions are used widely: single step function and delta function.
The single step function (switching function, Heaviside function)
1(t) is determined by the such relation (Fig. 4.1,a):
1() = {0 att < 0;

latt > 0.
1() 1(-1)

Fig. 4.1
For the time value t = 0 function is not defined.

At the functions is shifted to the right along the time axis on the
distance T function is determined by the following relation (Fig. 4.1.b):
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Oatt <T;
1e-m _{1att>r.

By the function 1(t) using it is possible to present the different
signals. For example, switching the voltage u(t) (Fig. 4.2.a) at the time
moment t is expressed by expression f(t) = u(t)1(t — ).

This process is shown in Fig.4.2.b.

u(r) fin

’
’
’
’
4

of 1 of 1
a b
Fig.4.2

The rectangular impulse (Fig. 4.3, ¢) can be written as:
f@© =1 —t;) — 1(t — t2). (4.2)
Functions 1(t — t;) and 1(t — t,) in
expression (4.2) are shown in Fig. 4.3, a 10-t)
and Fig. 4.3, b respectively. [
The complex function of an arbitrary
form can be represented approximately
through the single step functions. 7 7 ;
Graphics of function f(t) is shown in the
Fig. 4.4. Let’s break the axis of time on

| L(t-t)
small areas At. Then the growth of the L —
function is |
Afi = f(kAt) — f[(k — DAt] = 3 (4.3)
=f(@ - f(z -4y, . - :
where T = kAt. 0 bl
1_
0 T
Fig. 4.3
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So, expression for this function is
f(@) = f(0)1(t) + Xi=1 Afy 1(t — kAD). (4.4)

fin

o

f(-“‘)\
/

ol ‘

0 A 2A7 DA AT 7
Fig. 4.4

Delta function (Dirac function) &(t) is determined by the relations

5(t) = {fo ‘C‘ft";i% f S(t)dt = 1.
Delta function can be represented ggo an impulse with the time
duration Atand amplitude U,,, = Ait at At — O (Fig. 4.5), that is
Un = limAt_,OAit — 00,
Then the area S of the impulse time duration
5=UmAt=AltAt= 1

equals to unit.
At the delta function shifting on the time t we obtain the delta
function 6(t — ) also (Fig. 4.6).

£ fin «
© §8(f) 8(t-1)

Af
0
Al 1 0 T 1
Fig. 4.5 Fig. 4.6

Delta function has such properties:

0 att # 1,
o att=r1,

5(t—r)={ fc?(t—r)dt=1.
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Delta function has a valuable filtering property:

o At At
ff(t)fi(t) dt = f FO8(t) dt = f F£(0)8(t) dt =
N - - 4.5)

At co
1O [ 8@ de=f© [ 8@ de=f0),
—At -0

as far as limy;_,o f(t) = £(0).
Analogically for delta-function 6(t — t) property we have

Jo f®8(t =0 dt = f(0). (4.6)
The filtering property of the delta-function is shown graphically in
Fig.4.7.
fo A
fo

3(t-7)

0 T 5
Fig.4.7

From the comparison of the single step function (see. Fig. 4.1) and
delta-function (see. Fig. 4.6) it is clear that
t

fS(t) dt = 1(0),

8(0) = 5 [1(O] = 1'®).

4.3 Circuit time characteristic

The time characteristic of a circuit is called a function of time,
which value is determined by the reaction of the circuit on the given
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typical action. Such reaction depends only on the circuit’s scheme, that
is, it can serve as a characteristic of circuit.

The time characteristics are defined for linear circuits, which are
don’t have independent sources of energy at the zero initial conditions.
The time characteristics are devided into two groups: transient and
impulsed.

The transient characteristic or the transient function is determined
by the reaction of the circuit on the action of the unit step function. It
has the following varieties:

a) at the action of a single jump of voltage:

— if the reaction is voltage, then the characteristic is called as
transient coefficient under the voltage K, (t) (dimensionless value);

— if the reaction is electric current, then the characteristic is called
as transient conductivity Y (t) (the unit of conductivity measurement is
Siemens (Sm));

b) at the single jump of electric current:

— if the reaction is voltage, then the characteristic is called as
transient resistance Z(t) (the unit of the resistance measurement is
Oohm);

— if the reaction is electric current, then the characteristic is called
the transient transmission coefficient under electric current K;(t)
(dimensionless value).

In general, the transient characteristic is denoted by h(t). For
individual jumps of electric parameters a jump of constant voltage from
zero to 1V or jump of a direct current from zero to 1A is used.

Impulse characteristic or impulsed transient function is determined
by the circuit reaction on the action of the delta-function form.

At the impulse characteristics calculation at the input of a electric
circuit the impulses of infinite amplitude value, zero time duration and
unit area is applied. So, we have the following types of impulse
characteristics:

a) at the action of impulse with area in 1Vs:

— if the reaction is voltage, then the characteristic is called as
impulse transient coefficient of voltage. (The unit of measurement of the
impulse voltage coefficient is the unit per second (1/s));

— if the reaction is an electric current, then the characteristic is
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— called as impulse conductivity. (The unit of measurement for
impulse conductivity is Sm per second (Sm/s));

b) at the electric current impulse action with an area of 1As:

— if the reaction is voltage, then its characteristic is called as
impulse resistance. (The unit of impulse resistance is Ohm per second
(Ohm/s);

— if the reaction is a electric current, its characteristic is called as
impulse transient current coefficient. (The unit of the impulse current
transient coefficient is the unit per second (1/s)).

In the general case, the impulse characteristic is denoted as a(t).

Let’s define the relation between the transient and the impulse
characteristics.

Let’s firstly consider the reaction of electric circuit on the impulse
action of short time duration t; = At (Fig. 4.8,c)

fin(®) = Upn [1() — 1(t — At)], (4.7)
here U, is impulse amplitude.

By the reaction definition of an electric circuit on a single step
function 1(t) (Fig. 4.8,a) or 1(t —At) (Fig. 4.8,b) is transient
characteristic h(t) or h(t — At).

P i Ther_1 by the overlgy prinpiple
the reaction of an electric circuit on
external action is defined by the

formula (4.7)
fout (£) = Up [h(8) — h(t — At)] =

0 I oa 1 _ h(t)—h(t-At) _AR(D)
S 1-Ar) - At UnAt = At Si, (48)
— where Ah(t) = h(t) — h(t — At) is
growth of function h(t); S; = U, At
is area of impulse.
1

0 A7 7 Let’s At—=0 and Up = 5
Ao ’ Then the input action goes to the
delta-function according to formula
(4.7), because U,, - o and area

S; = 1. Reaction of electric circuit

0 Af i according to expression (4.8) is
Fig. 4.8
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__Ah(t) ,
fout(®) = AI%T_{IOTSi = h'(O).
By definition, the reaction of an electric circuit to a delta-function
form action is a impulse characteristic, i.e.
a(t) = h'(t). (4.9
The reaction of an electric circuit to the action of small but finite
time duration with the impulse area S; is determined by the expression
fout(t) ~ a(t)Si- (4-10)
The approximate equality (4.10) is more accurate, then the time
duration of the impulse At is smaller. As it is noted earlier, the time
characteristics are determined for electric circuits with zero initial
conditions. Therefore, the transient characteristic A(t) must be recorded
as: h(t)1(p).
Then, according to the expression (4.9) we have

a(t) = %[h(t)l(t)] =h'DO1(t) + h(t)1'®

(4.12)
= h'®1(t) + h(0)8(0).
Expression (4.11) is called the generalized derivative. If at t = 0,
h(0) = 0, then the generalized derivative coincides with the ordinary
derivative (4.9).

t
h(t) = f a(t)dt.

— 00

Let’s consider the examples of time characteristics determination.

Example 4.1.
Define time characteristics for the circuit on fig.3.7.

Solution.
1. Transient admittance. In the input circuit is applied single step
function

u(t) = 1(t) (4.12)
In operation form (table 2.1)

1
1(8) = _— U(®).
Expression of operator electric current in electric circuit is
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Up) 11 1 1
283 =yt (41
T'+p—C p+—

i) =1(p) =

The original form of electric current in the electric circuit according

to the Table 2.1 is expressed in the form
1 1
i(t) = ;e'ﬁ.
Now the transient conductivity has the form
Y@ ity i) 1 ‘ic 414
= —_— = — e, .
w1 re .19
The graph of transient conductivity is depicted in Fig. 4.9, b and the
input action is described with a single step function (Fig. 4.9, a).

fin 10 Y

|

0 Tt 0 f
Fig. 4.9

2. The impulse conductivity. At the input part of the electric circuit
a voltage impulse in the delta-function form is acted

u(t) =68(t) (4.15)
In the operator form according to Tab. 2.1 we have
5(t) =1=U(p).

Expression of the current operator in the electric circuit is

. Up) 1 1 1 1
L] = 1(p) = == =z _
Z(p) pr+ch rp+%

(4.16)
1 1
1ptc—7 1 " 1 1
r p+% r GC_l_%
Here is the degree of numerator and denominator in the image
forms were the same. Therefore, the allocated whole part in the
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expression is the unit, and the degree of the numerator was lower, and
the expression for operator image became the correct fraction.
Expression for the operator image of impulse conductivity is

I(p) 1 1 1

ay(@) = p==—(1-=
ulp) r ¢, 1
p+rC

Expression for the original of impulse conductivity is

1 1 1
ay(p) = ay(t) =~ [S(t) - Eeﬁ] : (4.17)
The graph of impulse conductivity function is depicted in Fig. 4.10,
b; the form of the input action is delta-function &(t) is depicted in Fig.

4.10, a.
S ar(f)T

OC

0 [

1
0 t r:C
Fig. 4.10

The impulse characteristic can be found by a generalized derivative
of the transient characteristic (4.11). By using the expression (4.14) we
obtain:

V() = ——me T HO) =

= - — ri: - —.
i H0) = -

So, from fornula (4.11) we have
() =~ e LD + - 8(0) =[50 ~ e 7]
= —— T — = — _— T
o r2c® r T rc® ’

which coincides with the expression (4.17).

Example 4.2.
To define the time characteristics for an electric circuit in Fig. 4.11.
» Y Y —1
i L 7
u(t) =%
Fig. 4.11
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Solution.

1. A single step function which is described with expression (4.12)
acts in the input part of the electric circuit. The current in the electric
circuit in oscillatory mode is determined similarly to the expression
(2.46).

i(t) = e 8t sin wpy ot
( ) U)freL fre®s

expression for the voltage on the condenser u.(t) is similar to the
expression (2.54)

up(®) = 1 — 22

e % sin(wpret + a).

fr
So, expression for the transient conductivity Y (t) is
i) 1
Y(t) = e 8t sin wepet. 4.18
u(t) wfreL fre ( )
Expression for the transient voltage coefficient is
uc(t) Wo _st .
t)=—2=1———e%sin(wst +a). (4.19
U (t) (l)fre ( fre ) ( )

Graphs of transient characteristics Y (t) and Ky (t) are shown in
Fig. 4.12, b and Fig. 4.12, c (the input action is described with the unit
step function 1(t) (Fig.4.12,a).

fin 19

Y1) Ku(0)

Fig.4.12
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2. Imulse characteristics. At the input part of the electric circuit acts
a voltage impulse in the delta function form in accordance with the
expression (4.15). The impulse conductivity is defined as a generalized
derivative of transient conductivity. From the expression (4.18) we have

Y'(t) =

[e7%¢(—8) sin wpypet + wrree % COS Wppet] =
et "
0 —
= orrel e 8t cos (u)fret + 5 0() ; Y(0) = 0.
Then according to the formula (4.11) we have
ay(t) = P0_ -8t cog (u)fret + I 0().
(*)freL 2
Voltage impulse transient coefficient is determined as a generalized
derivative of the voltage transfer coefficient also. From expression
(4.19) we have

»
K'y(t) = — [e7%¢(=8) sin(wfret + @) +
(*)fre
»
+0sree % cos(wpret + )] = —2 ¢=8tsin Wfret;
(*)fre
Wo .
Ky(0)=1-— sin a.
‘*)fre

Then by the formula (4.11) we have

) )
ag, (t) = 1(t) 0 e-Stgin Weret + (1 ——2 sin a> 8(t) =
(*)fre (*)fre
) )
= —2 ¢~Btgip Wpret + |1 — % sina)8(o).

(*)fre (*)fre
Graphs of impulse characteristics ay(t) and ay,, (t) are shown in
Fig. 4.13, b, Fig. 4.13, c. The input action is mathematically described
with delta-function (Fig.4.13, a).

ay(n ag ()

i h\ﬁ M ,
%

\i




Problem 4.1.

Calculate and analyze time characteristics hy, (t), ay, (t) for
electrical circuit of the second order (fig. P.3.2).

Solution.

Let’s find transient and pulse characteristics hy,, (t), ay,, (t) using
(P.3.1)

Transient characteristic:

1 1
h =-Y = :
)= VW) = s G + 2o + wd)
Its original
1
hy, (p) = (eP1t — gP2t), (P.4.1)

_ (r1 + 12)r3C(p1—P2)
Accounting numerical calculation, we get from (P.4.1)
1

hy () = (104 10)-4-10-10-6(—3,82- 103 + 26,18 103) %
(P.4.2)

t t
X (6—3,82-1031' _ e—26,18-103t) — 0,56 <e 0,262:1073 _ e 0,038'10_3)_

Impulse characteristic.

1 p

@, (6) 21(P) (ry + 1)r3C p? 4 28p + w3 ( )
Let’s find original from (P.4.3). As
p
ay,,(p) = : ,
Y P (r + 2)13C (p—p1)(P—D2)
Then
p1 D2
a = ePit + epzt) =
YZl(p) (ry + 7"2%7"361 <P1 —P2 P2—DP1
(p,ePrt—p,eP2t). (P.4.4)

— (r + )10 (p1—p2)
Accounting calculation for i1(t), we get from (P.4.4)
1

t) = x
@ (0 (10 +10)-4-10-10-6(—3,82- 103 + 26,18 - 103)
x (—3,82- 103e-38210% 4 76 18- 1036—26,18-103t) _

¢ ¢
= <1466e 0,62107° — 214e 0262'10_3) Cm/c. (P.4.)5)
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Graphic of transient characteristic is shown in fig. P.4.1 of pulse
characteristic — in fig. P.4.2

l k};(t).Cm
0,06

0,05

Fig. P.4.1
1600
1400
1200
1000
800
600 —
400 —
200
0 27 t
T e ee———
-200 ——-</’_z
eh

=400 —
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4.4. The convolution integral

In Section 4.2, it was shown how the function f(t) of the arbitrary
form can be approximated by the sum of the shifting among themselves
stepped functions with different amplitudes (see Figure 4.4). Such a
function may also be represented by the sum of the rectangular impulses
of short duration At in time between them (Fig. 4.14):

n

fin® = D finge®), (420)
k=0

where
finge () = fin(kAD[1(t — kAD) — 1(t — (k + DAD)] =
= fin(M[1({ —7) - 1(t -7 - AD)].

Here, as in the expression (4.3), it is accepted that T = kAt and
At = At which is true for small time intervals At.

In the expression (4.20) fi,x(t) is the impulse time duration At
(shaded time interval in Fig. 4.14) with amplitude f;,, (kAt). That is, the
function f;,(t) can be approximated by the sum of such impulses
fin(kAt). Thus, the initial action can be expressed with the sum of
impulses of short duration.

J®

J(kAD

]
]
)
|
A
A
)
i
1

0

0 At 2At

kAt (kDAr f

To determine the electric circuit reaction the expression (4.10) and
the electric circuit reaction into the impulse action f;;, . (t) are used
foutk (t) = a(t — kAt)Sy, ,
where S;;, is area of k-th f;,,(t). Then
foutk (t) = a(t — 1) fin (VAT
The total reaction on action f,, ., (t) is determined according to
the superposition principle (4.1)
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T=nAt

four(®) = Z foutk @) = Z fin (Ma(t — 1)At.

T=kAt=0
Here sum on k |s replaced on sum on time from t = kAt = 0 at

k=0tot=nAtatk =n.
At time interval At tends to zero (At — 0) we have expression:
t

Forue(©) = f fn@alt — D). @.21)

0

The integral (4.21) is analogous to the convolution integral. It is
also called the Duhamel integral. Here the integration is executed by
variable t and t is fixed time point in which the reaction f,,.(t) is
determined. Formula (4.21) shows that the reaction of the electric circuit
fout (t) at time moment ¢ is defined as the sum of reactions of this
electric circuit at this moment of time from all actions on the electric
circuit acting on its input clamps at all moments of time preceding to the
time moment ¢.

In the same way as formula (2.25), the second form of the Duamel
integral can be written as:

1
Foue(©) = f fin(t = Da()dx. 422)

0
The reaction of the circuit f,,,;(t) on the complex action f;,,(t) can
be determined by the transient characteristic h(t). As already noted, the
input action f;,(t) can be represented by the sum of partial actions
fink (t), which is the product of the function growth on the k-th interval
and per unit step function that is late on the time interval kAt (see Fig.
4.4), that is by the expression (4.4)

fin® = fin (1O + ) Ayl (¢~ KAL),

The reaction f,,,¢ . (t) of electric circuit on the action f;;, . (t) is the
product of the increment of the input action Af;,, on the transient
characteristic h(t — kAt), which is late on the interval k(At).

Afoutk ) = Afin,kh(t — kAt).
It can be written down with the second order of smallness as
Afing = f';, (kKAt)AL. (4.23)
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Here by summation of partial reactions with take into account
expression (4.23) we have

four® = D Afguese(6) = (4.24)
k=0

= £ (0)R(D) + Z f', (kAEAE h(t — kAE).
k=1

If now to increase the number of n intervals, correspondingly
reducing the duration of the time interval At, then the input action
approaches the smooth curve f;, (t) and the sum in the expression (4.24)
pass to the integral, and the approximate equality equals the exact:

t

MAﬂ=ﬁA®MO+ff@ﬁm&—ﬂﬁ, 4.25)
kAt =T ; At — dt. °

This is the third form of the Duamel integral.
By using the identity of the integrals in the convolution formulas
(2.25) and (2.26), one can write the fourth form of the Duamel integral

t
mAU=ﬁA®Mﬂ+ffm@—ﬂMﬂw

0
Let’s apply to the integral in the right side of formula (4.25) the
integration rule by parts (2.5), where
u=nh(t-—1);dV = f'i(dt;, V= fi,(1); du = —h'(t — 1)dr.
Then

t
o~ | fin @R e = Dor] =
0

t
ff@&%@—ﬂ&=h@—ﬂm&)
0

t
= fin(OR(0) = fin (0)A() + ffin(f)h’(t —1)dt.  (4.26)

0
By substituting the expression (4.26) into expression (4.25), we get
t

MAO?M®M®+IMﬁMﬁ—ﬂﬁ- 4.27)
0
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1)
2)

This is the fifth form of the Duamel integral.
By using the identity of the integrals (3.25) and (3.26) again, we
have from expression (4.27):

Frute® = fin(DR(0) + f £t — D Ddr,

0
This is sixth form Duhamel integral.
The Duamel integrals are used in calculating the reaction of circuit
to the action of an arbitrary form in the following sequence:
To calculate the appropriate time characteristic;
To determine the required reaction of electric circuit on action by the
formulas of the Duamel integral.

Example 4.3.

The voltage of arbitrary form is applied to the input of electric
circuit (Fig. 3.7)

u(t) = Uye . (4.28)

Let’s find the voltage U, (t) on the capacitor C.

Solution.

1. If the input action and the reaction of the electric circuit is a
voltage, then the time characteristic of the circuit is found in the form of
a voltage transient coefficient. To determine the reaction of the circuit
we use the formula (4.22), where f,,,:(t) = u (1), four(t) = u(t),
fin(t = 1) = u(t - 1).

The impulse characteristic a(t) is the impulse voltage transient

coefficient ay, (t); that is, the expression (4.22) has the form:
t

ug(t) = f u(t - Dag, (D)dr. (4.29)

0
For determination the value of ay,(t) to write expression for
ak, (p), by using the value of I(p) obtained in Example 4.1 according

to formula (4.16)
) = I1(») 1 p 1 1 1
Ak, p) =1\p) — =~ — == -
C 1 pC C 1
r Tt Tt
The original of the expression (4.30) according to Table 2.1 looks

like

(4.30)

82



1 _1
ag, (t) = i rC, (4.31)
2. For the integral (4.29) we obtain from the expressions (4.28) and
(4.31)

1 _z
u(t —1) = Upye D, g, (1) = e rC,

Then the voltage of the capacitor C is
t

t
1 T
u(t) = f Upe %0 _ e 7dt = = “tfe dt =
rC
0 0
U C 1 o A— B CE )
:—m _atr—e(a_ﬁ)r t =—me *e =
rC arC —1 0 rC
=—lﬁL—(aﬂf—eﬁ%) (4.32)
1—oarC ' '

To determine the voltage u.(t) by using the integral expression
(4.25), where f;;,(0) = u(0). The transient characteristic h(t) is the
transient coefficient of transition over the voltage Ky (t). So, h(t — 1) =
Ky (t — 7); that is, the expression (4.25) takes the form:

1, (t) = w(0)Ky (£) + f WKy (t = Ddr.  (433)

To solve the problem, one must determine the transient
characteristic K (t). To do this, by using the result of Example 4.1 for
1(p) value by formula (4.13) we write the expression for K (p):

K _ 1 1 1 1 1 1 434
lmywmﬁ—— — = (434)

1pC rC
"+l e+

The original of the expression (4.34) according to Table 2.1 looks
like

1
Ky(t)=1—e rc. (4.35)
According to the formulas (4.25), (4.28) and (4.35) we obtain
expressions

u(0) = Up; uin(1) = Upe™ ™%,

d —-at _ at.
7 in (D] = Une ™7 (~0) = ~alUpme ™% (4.36)

Ky(t -0 =1— e 7™,
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Then the voltage of the capacitor C according to formula (4.33)
takes the form

t
1
u(t) = 1 —e rC + f( al e““) e_ﬁ(t_ﬂ] dt =

0
t
Upn, (1—e rC ()(Umfe_"‘T 1—e et T)] dt =
0
t t
j 1
0

1
Upn (1 —e rC —alUy, | e “vdt + aUpye rcfe(ﬁ_aﬁ dt =
0

(4.37)

U —-at _ —% + arC U -aT _ —% _
m\€ e 1—arC m\€ e =

Upn _ L

T I—wC (e T-e TC)'

The result (4.37) coincides with expression (4.32). By comparing
the formula (4.37) and expression for electric current (3.7) obtained in
Example 3.2, we can see that the diagram u.(t) for the electric circuit
expressed in Fig. 3.7 looks like in Fig. 3.4.

Example 4.4.
At the electric circuit input (Fig. 3.7) a voltage impulse is applied
the form of which is shown in Fig. 3.8, where in the time interval [0-t;]
the input voltage varies exponentially
u(t) = Uge ™. (4.38)
To determine the electric current i(t) in circuit.

Solution of problem we find by the formula of Duamel integral
(4.25).
As transient characteristic, obviously, will be transient conductivity
Y (t) (4.14)). Then expression (4.25) takes the form
t

i(t) =u(0)Y(t) + j u' ()Y (t — 1)dr. (4.39)

0
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Let’s define the components of the expression (4.39). Similarly, to
expression (4.36), we have

u(0) = U,. (4.40)
From formula (4.38) we write
u(t) = Uge™ ™", (4.41)
u'(t) = —alye™*". (4.42)
From relation (4.14) we have
t—7
Yit—1)= %eﬁ. (4.43)
Expression for voltage u(t) (Fig.3.8) is:
0, att <0
u(t) = {er“” ,at0 <t <t (4.44)
0, att = t,.

Expressions for the electric current i(t) are defined in each interval
separately.
In the time interval t < 0 the input action u(t) = 0, so electric current
reaction i(t) equals to zero also.
In the time interval 0 < t < t; according to expressions (4.14), (4.39),
(4.40), (4.42) and (4.43) we get:
t

1 _t 1 t-t
i(t) = Uo—e rC—focUOe“”—e rC dt =

Uo
T

t
_i O(Uo _t
e rC ——e rC e dt—
0

(4.45)

U, _LC Uy arC (_m _LC)
= — C — — - r =
re rl1—arC ¢ ¢

Uo

t
- r(1 —arC) (e_ﬁ B arCe‘“t).

3. In the time interval t > t, the expression for electric current i(t)
is getting by subtracting from expression (4.45) at the time moment
t = t, the expression for electric circuit reaction on negative jump of
input voltage:

u(ty) = Uge %, (4.46)

This reaction according to expressions (4.14) and (4.46) has the

form:
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1 @=ty)
it) = u(tl)y(t - t1) = er_atl;e rC
(4.47)
1 t
= ﬂe(ﬁ_a)tle_ﬁ.

Tr
And expression for electric current i(t) in the time interval t > t; is
determined from equations (4.14), (4.39), (4.40), (4.42) and (4.43)

) 1 _t 1 trt Uy (1 a)t t
i(t) =ug—e ¢ — | alUye " —e 7C TC dr — —e\rc ) 1eTrC =
r r r

0

(4.48)
ty
1 1
= ﬂe_% — ﬂe rth e(ﬁ_a)rdt — ﬂe(ﬁ_a)tle_% =
r T T
10 t
U (G=—a)t ] —_—
=% |[1-eGe e,
r(1—arC) [ e’ e’

Expressions (4.45) and (4.48) coincide with the corresponding
expressions (3.15) and (3.16).

Let’s analyze the electric current i(t) change over the time in each
time intervals.

In the time interval t < 0, as already was noted i(t) = 0.

At the time t = 0, according to the expression (4.45), the electric

. . Uy

current jumps up to the value of i(0) = —

In the time interval 0 <1 < t;, the electric current i(t) varies
according to the formulas (4.45). Here are the following optlons

la <— Then arC < 1 and exponential function e rc attenuates
faster than functlon e~*T. However, the maximum value of the first
exponent is (L) at t = 0 and it is more than the maximum value

UootrC 0

of the second exponent ( ) Their difference is equals UT

Therefore, the electric current l(t) falls from 7 npu t = 0 to its value
according to expression (4 45) att =ty:

(= Uo < —at
i(ty) = =i C) (e” e arCe™%1),
Andatt = ty:
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_b
: _ 7€ — p—Qt
l(t ) = r(1— arC)( c—e ™).
Obviously, this value is negative and the value of the electric
current jump is

i(t) —i(t]) = — e, (4.49)

t
2. Let’sa = % Then arC = 1 and exponential functions e ¢ and

e~ %t attenuate with equal velocity. According to the equation (4.45) the

expression for electric current is
, Ud o U _t
i(t) =Te a =Te C,
At the time moment ¢, the electric current value falls to the value
i(t7) = Yo p-at, = Yo -t
l = —e =—er
. . 1 T r
This value is positive.
At time moment t = t; according to the expression (4.49) electric

current change to zero by jump on the value
Uy _t U

——e 1C = —¢
r r

At a>% Then arC > 1 and exponential function e~%¢ attenuates

—at

t
faster than function e rc. Expressions (4.45) can be rewritten as
follows:

t

— -at _ o, r¢
i(t) = T(arc 5 (arCe e C) (4.50)
Here the maximum value of the first exponent (—C))) more
than maximal value of the second exponent ( ) also. Their

r(a C 1)
difference equals to 7. Thus electric current value i(t) falls from value

% to its value according to the expression (4.50) at t = t;:

[(t7) i ( Ce~t ‘t_é)
= — T .
i(t] r@C -1 arCe e

This value may become negative with a sufficiently large value t;.
At t = t; the electric current falls by jump to the value according
to formula (4.48):
Uy _t
; t+ — —( —aty __ C)
i) r(arC — 1) ¢ ¢
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Obviously, this value is negative. The value of the current jump is
also determined by the expression (4.47).

In the time interval t > t; electric current i(t) at a < % or at
a> % falls to zero in accordance with the expression (4.48), while
having a negative direction. At a = % the electric current remains zero
value for all t > t;. Forms of electric current i(t) curves at a < %

a > i, and a = — are shown in Fig. 4.15,a,b,c.
rC rC

i(f) i(f)

arC arC
b
1

Electric current i(t) in this example we can find other expressions
of the Duhamel integral, for example, the expression (4.21). Here u(t)
value is determined from equation (4.41). The impulse characteristic,
obviously, is an impulse conductivity aY (t) from relation (4.17).

Then the expression (4.21) looks like
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t

i(t) = fu(r)aY(t —1)dt. (4.51)

0
Taking into account the expression (4.44), we can find the
expression for electric current i(t) separately for each time intervals.
1. In the time interval t < 0 the input action u(t) =0, thus
reaction i(t) equals to zero also.
2. For time interval 0 < t < t; according to relations (4.17), (4.41)
and (4.51) we have

1 1 =t
aY(t—T)—;[S(t—T)—Ee TC],
g 1 1 _t=1]
i(t) = f er_‘”—[S(t —T7)——e 7C|dt =
T rC ]

0
(4.52)
t

t

Yol [ -atsir — yap — = [ o-ar
e Y6 (t — 1)dt e .

T rC

0 0

The first integral in square brackets is found according to the
filtering property of the delta function
t

fe“”&(t —1)dt = ™97,

then
" t
1
, Yol — Gt _
t)=—|e " —— cPhde| =
i(t) " e rcfer
0

t
i 1—arC (e e = e—ar)] -

= L(e_% — arCe“’”)
r(1 — arC) '
4.In the time interval t > t; expression for electric current i(t) we
can find by replacing the upper limit at integration in expression (4.52)
into t;:
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1

1
t— U “”—[St— - — C]dt—
i(0) = | Upe™™ —|8(t—1) ——e7

U
O[f ‘“Té(t—r)dt——f ~ar o5 e

The first integral in square brackets |s calculated within the time
interval 0 <+ t; and delta function §(t — t) acts at t > t,, therefore, for
the filtering property of the delta functions (4.5) and (4.6) we have

ty

j e 6(t — 1)dt = 0.
0
So,

UO 1 _t (i—a)‘r
[ t) = ——— C C dt =
i(t) e f e\r
0 t
=—9 [1- (—c‘“)fi] rC,
r(1—arC) [ er ¢’

This expression coincides with expression according to formula

(4.48).

Problem 4.3.

Calculate and analyze (in common case) of output voltage for
linear circuit of the first order, using convolution method (Duhamel
integral) by impulse action of complicated form. Calculation circuit is
shown in fig. P.4.8, form of input signal — in fig. P.4.9. It’s necessary
calculate voltage u; of inductance L; u; = u,.
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Solution.

Let’s define transient characteristic hg, (t) for the given circuit

(Fig.P.4.8). In operational form
1
hg, () = Ky,, (p) o

(P.4.8)

where Ky, (p) - operational function (operational voltage transfer

coefficient).
In fig.P.4.8 we designate nodes 1, 2 and bases node 0.

Let’s compile matrix of node voltage (MNV) for nodes 1, 2

1 1
_lr r
A=111 1 1]
—_— —_ _|_ N —_
r r pL r
Operational voltage transfer coefficient
Ky, (p) = b1z,
Uz1 Ajq >

ol 1 11 2 1
127 U=y "ol r T plL

Then
Ko @) = —g——w = 32
Uz1 — T2 1 P T
r (F + p_L) 2 p+ 2L
Now, accounting (P.4.8) , (P.4.9), we get
p 1 1 1
hie, () = 5 —— =5 —
P “rtgg

Original of ( P.4.10)

_ =L -5+t
hKU(t) —Ee r —Ee 2L,
In fig. P.4.9 input signal assume meanings
(ui(t) =0att <O0;

u(t) =A+ at0 <t <ty;

1
u(t) =Batty <t <ty
u(t) =0att > t,.
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At t < 0 output voltage u,(t) = 0, as input action u,(t) = 0. At
section 0 <t < t; voltage u,(t) can be find in according Duhamel
integral formula

Foue (0 = fin(OR(E) + f i @h(t—Ddr.  (PA4.13)

0
Here, accounted (P.4.12), (P.4.13) we get at this section
fin(0) =u4,(0) = A
T

1
h(®) = hi,, (6) = 7721

Bt —1) = hy, (t—1) = = 72D,
4 Ky 2 ’ (P.4.14)

B—-A
fin@®) =u () =A+ t;
ty
A

fin(D) =uy1 (1) =
Accounted (P.4.14), we get from (P 4.13) at this section

Uy (t) = uq1(0)hg, (8) + f ui (Dhyg, (t —1)dr =

A —_; (B — A)L Te( -t
= > —e 2L + Tf_‘l (e 2L 1) =
A zr_Lt+ (B —A)Le_zr_Lt N (B—-A)L _
-1ty -1ty
A (B-AL r B—A)L
_[_+( )]e_ﬂt+( )L
2 —T‘tl —Ttl
At section t; <t < t, integration interval from 0 to ¢ is divided at
two parts: from O to t; and from ¢, to ¢t. Then in according (P.4.13) we
get for this interval

(P.4.15)

t1

U5(8) = wpy (O, (8) + j Uy (Dhgy (¢ —7) dT +

0
t

+ fu’m(T)hKU (t —1)dr. (P.4.16)

ty
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Here ulz(t) = B, ulz(T) = B, uiz(T) - 0
Then at section t; <t < t,, accounted (P.4.15) and the second
integral in (P.4.16) equal to 0 [u,,(7) = 0], we get
A _r, B-AL _r,  _1,
uZ(t)_Ee 2L +Te 2L (e 2L —1)_
A (B-AL, _r, T
_ [EJF_m (e 2L _1)]3 2Lt (P.4.17)
At section t > t, integrated interval from O to t is divided at
through sections: from 0 to t, from ¢t; to t, and from ¢, to t. Then in
according (P.4.13) we get at this interval

ty
15 (6) = 1133 (O, () + f 3 (Db, (£ — 7) dT +
¢ 0
+ f U, (Dhy, (t = ) dT — ug, (t)hg, (E —t) +  (P.4.18)
ty

t
+ fuig,(r)h,(u(t —1)dt.

iy
Here second integral is equal zero, as u;,(t) = 0; uy,(t;) = B;

hi, (t — t3) =21e_z_l(t_t2). Third integral is equal to zero too, as

u,3(t) = 0 at this interval, where from u,5(t) = 0. There for at section
t > t, we get from (P.4.18), accounted (P.4.17)

A B—A)L, _r T 1 r,.
uz(t)=[—+u(e 2Lt—1)]e 2Lt—B§e r(t—t2) —

2 Tty
A (B—A)L B
—|= g(e_%t_ 1) e_%t——e_%te_zr_Ltz =
2 Tty 2
A (B-AL, _r, B _ro | -I:
[E-I_T(e 2L —1)—53 2L%|e 2L". (P.4.19)

Therefore, output voltage in fig. 4.8 by input impulse action are:
at sectiont < 0

u,(t) = 0;
atsection0 <t <ty
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B —A)L r B —A)L
uz(t) = g] _2Lt + u;
2 -1ty -1ty
atsectiont; <t < t2
t) = — (e 2" -1 2L :
w(® =[5+ e Gt | G
atsectiont > t,
A (B—-AL, _r, B _r.] -,
u(t) = [E+T(e 2L — 1)——e 202 |e72L

Lets check the solution, using other formula Duhamel integral
t

fout(t) = ffm (T)a(t — ‘L')d‘[.

0
Let’s find impulse characteristic a,, (t) for the circuit (fig. P.4.8).
In operational form
Agy (p) = KU21(P)-
Using (P.4.9), we get
r
_L =

N

Ak, (p) = Ky,, () =

NIP—‘

p
r
P+ﬁ
1 T 1
2L G A |
p+s51

Now original in according expansion formula

ag, (t) = [6(1:) ——e a1t ]

At t < 0 its evidence, u, (t) =0.
At section 0 < t < t; we get

at —1) =ag,(p) = 1[5(15 - 1) — LLe_ZT_L(t_T) ] :

B—A
fin(®) =u () =A+—— f t; fm(@M=un(@m =4+ 0

T.

Now
t

Uy (6) = j Uy, (Dag, (¢ — 1) dr =

0
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t
B—A\ 1 ro_r
_ Y PN g o B
_f(AJr T) z[s(t R Jdr=
0

t
t t
—Afzso: Y _Zr_Ltf ITdr +
=5 Ddt— e e T
0 0
t t
o8 _Af 8t — vyar - E A" ‘%tf 21
T T T)dt I, e Te T.
0 0
Here
g g 1 t 2L
r T r
fS(t—r)dT =1; je_ﬁtdrzTe_ﬁT =—(e_ﬁt — 1);
I o T
0 0 2L
t t
r.. 2Lp2L 2L T,
er(t—r)dr=t; fre 2L dr=—[——<——t)-e ZL].
rilr r
0 0
Then
oA AT _%tZL( I 1)+B—At
=gt ¢ 2t
_B-Ar _A)’"e‘zr_fz—L[z_L_ (2—L— ()| =
4Lt, rilr T
A A r B—-A
=—_—_.(1=¢2t t —
272 (1-e72)+ 2t
(P.4.20)
(@D @y g g
2ty T T
=ée_%t B—At_(B—A)Le_ZT_Lt_l_(B—A)L_B—At=
2 2ty Tty Tty 2ty

b

_ A (B—-A)L -e"ﬁt N (B—-A)L
2 Ttl T'tl
That is way result (P.4.20) at the section 0 <t < t; is coincided
which (P.4.15).

Atsectiont; <t <t, we get
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ty t

u,(t) = f uq1(v)ag, (t —1)dr + f Uz (v)ag, (t—1)dt =
0 ty

B—-A 1 T r
_ —5+(t-1)
= - —T)——e 2L
f (A+ . T) 2[6(t T) 2Le ]dr+
0

ty ty ty
—Af 5(t — D)dr — T ‘%tf 21 +B_Af 8(t — 1)d
= > T)art 4Le e T ztl T T)art
0 0 0

ty ¢ ;
(B_A)T L _r. B Br .
————e 2L fTe 2L dT+—f§(t—‘L’)dT——fe 2L°dt.
2 4L
0 ty ty
ty ty
Y T, 2L, _r, ‘
f‘s(t—f)dT—O, fe 2L d‘L’—T(e 2L —1),
0

0
t t

T 2L[2L /2L .
6t —1)dtr=0; | Te 2L°dr= — ——(——tl)-e 2L 1];

Tr Tr T
0 0
A : r 2L r r
_ _1. 57T g — 22 ( =51t _ 51t
f&(t T)dt ,erLdT T(eZL eZL).
t1 t1
Then
(B—A) _r.r2L /2L _r
uy(t) = — 2t e 2" T — (T - t1> e ZLtl] —
B r r B r r
——e 2272t 4 Ee‘ﬁtle‘ﬁt = (P.4.21)
A A B —A)L B—A
A e A g BZAL T (B-4)
2 2 T'tl Ztl

2L T Te B e e B T, T,
x(——tl)-e 2L le 2L —Ee 2L2%2¢ 2L +Ee 2L 1e 2L° =
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[A (B - A)L( ——t1 . 1) . Ee—zr—Ltz] . e—Zr—Lt_
2 Tty 2

That is way result (4.21) at the section t; <t < t, is coincided
which (P.4.15)

At section t > t, we get

ty tz
u,(t) = f w1 (Dag, (t —1)dr + f Uz (v)ag, (t —1)dr +
0 ty

t
+ j u3(Dag, (t —1)dr =

3

ty
B—-A 1 T r
— L 2 ()
—f <A+ T) 2[6(t 7) L€ 2L ]dr+
0

(2]
t2
1 r r
= _ I ()
+fB 2[5(t T) 2Le 2L ]dr.
ty

Here, as u;5(t) = 0, then we get
ty ty

A Ar _r, -
uz(t)=5f 5(t—T)dT—E€ 2L fe 2L°dt +

0 0
ty ty
+—— -f 5t —1)d (B__Ay.‘ﬁff “2T7dr +
ot 1 T T)at 4L 1 e Te T
0 0
ta
Br =t
f&(t—r)dr——Le 2L fe 2L dr.
ty
where
ty ty

r 2L
f 6(t —1)dt = 0; f e 2l'dt= —(e 2Lt1 — 1);
r

0 0
ty ty

r 2L12L (2L .
6(t—1)dt=0; | Te 2L d‘[_———<——t1> e 2L1]

rir r
0 0
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t; iy

r 2L r r
f5(t—r)dr=0; fe_ﬁrdr=—(e_ﬁt2—e_ﬁt1)_
T
ty 1
Then
Ar _r . 2L Tt
uz(t)_—ﬂe 2L T(e 2L _1)_
B—A _r,.12L 2L T
e 2L __(__t1)'e 2L 1]_
2t T T
B _r, B, _ 1, _I.
—Ee 2L +E(e 2L — e ZL)_
(P.4.22)
A A B—-—AL _r
:—e_Zr_Lt—_e_%tle_zr_Lt_ge_ﬂt_i_
2 2 Tty
_B—A

2L T Te B T Ty
= (——tl)e 2L"te 2L —Ee 2L%e 2L" +

2ty \r
+Ee_%tle_%t = é + w(e_Zr_Lt1 - 1) - Ee_zr_Lt2 e_Zr_Lt.
2 Tty 2
That is way result (P.4.22) at the section t > t, is coincided which
(P.4.19)

Consequently output voltage in the circuit of fig.P.4.8 if input
signal is changed in fig. P.4.7 has the next form:
t <0, u,(t) =0;
A (B-AL] _r, (B-AL
< = |l-——— 2L —_ .
0<t<ty, uy(t) [2 rt1 ]e + s
A (B-AL N (B—A)L _r

r
t —55t
t <t<tu(t) =|=— e 2L '|-e 2L;
! 2, U2 (1) [2 Tty Tty ]

A B-MDL B-AL _r, B _r,| _r
t>t2>u2(t):[__( ) +( ) e_ﬁtl_ie_ﬂtz]_e 2Lt

2 Tty Tty
Graphics of voltage u,(t) is shown in fig.P.4.10
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4.5. The convolution integral for envelope curves

In radio engineering the tasks of transient processes study in high-
frequency oscillation circuits under the modulation high-frequency
oscillations (Fig. 4.16) action on them are often found.

These processes are described by the

fin(t) = Fin(t) COS[th + lpin(t)]a (4-53)

where Fin(t) and y;,(t) are the amplitude and initial phase of high
frequency oscillation; w. is the cyclic frequency of carrier high
frequency oscillation. Functions Fin(t), ¥;,(t) slowly vary in time.
Function F;,,(t) is the envelope curve of the high-frequency oscillation

\NVW

Fig. 4.16

Sul®

=]
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The calculation of the transition process is simplified, if we confine
ourselves by describing only the envelop curve of high-frequency
oscillations.

Let’s on a resonant contour acts the signal describing by the
expression (4.53). To define the reaction f,,(t).

To use the formula of the Duamel integral (4.21). Assume that the
impulse characteristic of the resonant circuit has the form

a(t) = A(t) cos(wst + @f), (4.54)
where A(t) is an envelop curve; w is the own frequency of oscillation
contour; ¢ of is initial phase of free oscillations.

To substitute formulas (4.53.) and (4.54) in the expression (4.21):

t

foue® = [ fin(ale = D = (4.55)
. 0
= f Fip (7) cos[w,T + Y, (D) ]A(t — T) cos[wf(t —-7)+ qof] drt.

0
To convert the expression (4.55) into the cosines product:
t

1
fout(t) = Ef Fin(T) COS[((UC - wf)T + wft + lpin(‘[) + §0f] X

X A(t —1)dt + (4.56)
t

+%f Fin(0) cos[(w, + wf)T — wpt + i (7) — @5 ]A(t — T)dr.

Thg second integral in expression (4.56) is close to zero, since the
integration is performed for a high frequency signal (mc + cof). The
area of the positive and negative half-waves of which are mutually
destroyed on the interval of integration.

Tomy
t

four (©) = %j Fin () A(t - T)COS[((UC - (‘)f)T +
-I(iwft + Y () + (pf]dr. (4.57)

We can write the expression (4.57) through the instantaneous
complex values:
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t
1 . .
foue®) = 5 [ Fin(®) A = DRe [e/ e erren(®] dr =
0

t
1 .
Re [E f Fip (7) A(t — 1)e/29%dx |, (4.58)
0

where F,, (1) = Fj, (t)e/¥in™ js the complex envelop curve of input
signal; Aw = w, — wy is the absolute contour disorder.
From the expression (4.58) the complex envelop curve of reaction
is
1 t
Foue(©) = Foe (@) Voue® = [ Fyy(0) At = e,

0
If the phase of the input signal ¥;,(t) = const and absolute

contour disorder Aw = 0, then
t

1 .
Foue () = 5 f F, (1) At — T)e/bTdr. (4.59)

0
Expression (4.59) is a convolution of the envelop curves of the
input signal and impulse characteristic of the electric circuit and it is
called the convolution integral for the envelop curves.

Example 4.5.

To calculate the envelop curve of the electric current and i(t) in the
sequential oscillation circuit (Fig. 4.11), when it is switched by the
harmonic voltage, which envelop curve is a stepwise function (Fig.
4.17,a):

u(t) = Uy, - 1(2).

If the input action is the voltage and the electric current is the
reaction, then the impulse characteristic should be taken as impulse
conductivity ay(t). In the example 4.2 for a circuit (Fig. 4.11) it was
determined by the formula

w T
ay(t) = ;()Le‘& cos (wf + 5~ a).

Obviously, that its envelop curve is written as Ay (t) = % e ot
f
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Then by the formula (4.59) the envelop curve of electric current is
expressed as

t t
1 1 w
i(t) = —f w(@)Ay (t — 7)dr = —f Uy, - 1(6) 2% e=6-0 g =
2 2 wrL
0 0
¢ t
@o —6tf ot 0 -5t ,6T
20, ¢ T owLs e E
o 0
@Wo -8t
1—
26w LUm( ¢ )
Graph of the electric current i(t) is shown in Fig.4.17,b, where
Wo
Iy, = Up-

Consequently, the amplitude of the electric current oscillation in
the contour increases smoothly.

Methodic instruction

By study material of section “Method of convolution integral” to
begin with acquiring essence of superposition in electrical circuit and
order its application. Impotent role have circuit time characteristics —
reaction of the circuit to standard pulse influence. It’s necessary
distinguish transient and pulse characteristics, in spite of its dimensions
(dimension of pulse characteristic is equal to dimension of transient
characteristic, divided by second). The convolution integral is used for
calculation transient processes.
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Special attention it’s necessary to convolution integral by
calculation passing signal of complicated forms through electrical
circuits. The input action is divided on separate intervals. By that circuit
reaction at any time moment on a given interval is equal to reaction on
this interval plus reaction of the circuit on input signal, which action at
all moment on previous intervals.

Literature: [1] - [5]; [7]; [9]; [10]; [14 - 16]

Questions for self checking

1. What are circuit operational functions? What are varieties of
them?

2. What is connected circuit operational function with circuit
complex function?

3. Give an example of transient processes calculation with help
circuit operational function.

4. Explain sense of superposition method in transient processes
theory.

5. Determine standard test influence and connection between of
them.

6. What of time characteristic are you known?

7. Show order of transient processes in electric circuit calculates.

8. What particularity of convolution method calculates if input
action has gap of the first and second kind?
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5. METHODS OF TRANSIENT PROCESSES ANALYSES IN
THE NONLINEAR CIRCUITS

5.1. Particularity of transient processes in nonlinear circuits

Transient processes in nonlinear circuits are write down by
nonlinear diferential equations, which haven’t common solution
methods. Character of these equations dependents on input voltage, and
superposition principle isn’t used. That is way, standard test signals,
reactions on which are complete definite dynamic property of the circuit
for example, unit step function 1(t) or impulse function &(t) for
nonliear circuits. Transfer operation function H(p) and frequency
characteristic H(jw) aren’t are absent too.

At the same time transient processes in nonlinear circuits are more
diverse, then in linear circuits and corresponded peculiarity are used for
working out of different elektrotechnical devices, which can be realizes
in linear circuit impossible.

Using of the different methods dependence on peculiarity of
concrete problem and on level of computer technique, which is can be
used worker.

It is necessary to see, in nonlinear circuits the physical processes
have be privies analyzed before calculation.

5.2. Integrate method of approximation

Integrate method of approximation is used if it’s possible to pick up
approximate analytical expression for nonlinearity in a given problem,
which permit to compile differential equation for solution in analytical
form. It is possible seldom and for the equations of non high order.

Let’s consider example of transient processes in circuit for fig. 5.1,
a, where constant voltage includes to series connected nonlinear two-
port NT(r) and inductive coil. Transient process is wrote down by
differential equation

di

uL+ur+uNT=LE+ri+f(i)=U. (5.1)
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Let’s characteristic i = f(uyr) (fig. 5.1,b) can be approximate on
the same interval be parabola of the second order i = auZy or uyy =

\/g. Then differential equation becomes in form

d
La(auz) +raut+u=U (5.2)
or
du
2Laua +rau®+u=U (5.3)
whence after division of variable we get
U
t=-2La| ————du=
a.[ raz +u—ut
0
(5.4)
L U 1 2rvat +1-A
=—(In + —In - M),
T _ i A 2rvat+1+ A
U-ri— |=
a
. _ 1, 1-A
where A = \/(4raU + 1) ;M = Aln_1+A'

Function t = f(i) can’t be represent as open function i = @(t),
therefore for construction graphic i = @(t) its necessary to give the
several meaning i and define accordance meaning t.

5.3. Graphic integration method

Graphic integration methods are enough labor-consuming and used
for comparatively simple problem, for example, for calculate circuits,
which are describe differential equations with division of variable. Here
it is possible construction of a function graphic, curve of which limits
area, which proportional accordance meaning of time.

Let’s consider application of this method for fig. 5.1, a.

Let’s divide variable in equation (5.1)

dt =1 (5.5)
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a b NT
Fig. 5.1. Switching rL-circuit witch nonlinear two-port:
a— circuit, b — V.A.C. of two-port

Fig. 5.2. Performance of graphic integration method
for calculate of the circuit

Let’s integrate left and right parts by accordance variables. Then
accounting zero initial conditions, we get

t i
L .
t=!dt=!mdl. (5.6)

Let’s construct graphic of dependence

. L
¢ =577 i} (5.7)
From these graphic of area (regarding scale) we can find
dependence t = f(i) or i = @(t) (current i in fig. 5.2).

5.4. Method of phase plane

By investigation of transient processes in nonlinear electrical
circuits usually dependence of its parameters on times and in accordance
of these by construct graphics time t is lay out along abscess axis and
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investigate parameters: current, voltage, value of charge — along
ordinate axes. But can be lay out investigate parameters (i, u, Q) along
abscess axis and along ordinate axes — velocity of these values in time
(di/dt, du/dt, dQ/dt).

Coordinate plane, on which along one axes (usually along abscess
axis) investigation value x is lay out, and along other axes (usually along
ordinate axis) — velocity of these values in time y = dx/dt is cold phase
plane. That is way time is absent on the graphic, but graphic gives the
full information about process.

Transient process on complex plane are imaged by the same strait
or curve, if it describe by differential equation no more second order.
Method of phase plane isn’t used practically for circuit of more second
order.

Change state of system can be image by motion the same point on
complex plane. These pointer is cold «representation» or «productiony.
Co-ordinates of representation pointer x and y define its position on
phase plane and characterizes state of process at a given moment time.
At time representation pointer moves and describe the line, which is
cold “phase trajectory”. Kind of phase trajectory depends on circuit and
its parameters.

By periodic process phase trajectory is closed circle (for linear
circuit that is circumference or ellipse), which representation pointer
describe during each period. Phase trajectory for the none periodic
process is not circumference line.

In the upper half plain derivative of coordinate y > 0, hence
representation pointer can be move only to the right — in direction
increasing meaning x. In the lower half plain y < 0, representation
pointer can be move only to the left. Consequently representation
pointer move only clockwise direction. Dependence from initial
condition we get difference phase trajectory, which never intersect. On
the abscise excise dx/dt = 0, then phase trajectory cross these excise
under right angle.

Family of phase trajectory, which images processes in a given
circuit is cold “phase portrait”. Phase portrait allow envelope all totality
of move in a system, which may be arose in considered system.
Conclusion about moves may be without advance founding analytical
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expressions integral of initial equations even and then, when these
expressions can’t be received (that is very important).

Points of phase plane, where simultaneously dx/dt =0 and
dy/dt = 0, are called “special points”. They correspond balance
conditions (immobility) of considered circuit and may be steady and non
steady.

Special point, through which doesn’t though one phase trajectory
and which is surrounded by closed trajectories, is named «centrex.
Centre corresponds regime of irreversible balance.

Special point, which is asymptotical for the phase trajectories, is
named «focus». Focus is named «resistanty, if image point approach to
them, “non resistant”, - if one move away.

Special point, through which phase trajectories move, is named
«knoty. If move along phase trajectories has direction to knot, then such
knot is named “resistant”, if move along phase trajectories has direction
from knot, - “non resistant”.

For transient processes (oscillate, aperiodic e.t.c.) in linear circuit
of the first and second order are the phase portraits, witch which can be
compare phase portrait of investigatory circuit. For the some nonlinear
circuit their phase portraits, but number of varieties of such circuit are
more great. Therefore their phase portraits are very difficulty.

Phase portraits are compile, as a rule, for the circuit without energy
source, but in the same case can be receive phase portrait in the frost
regime.

For construct graphic of dependence i(t) it’s necessary to define
the time moments, which correspond to pointers of phase trajectory.
Time interval t, during of which transition is accomplished from k-th
point (x, yi) of phase trajectory to the close (k+1)-th point (xx, Vi+1),
can approximate calculate by the next in the same way. As y = dx/dt,
then

Xk+1

1
At = f —dx.
y

Xk
Let’s mark i = f(x). In according with “theorem about average”

we get
At = f(&) (X1 — xx) = f(E)AX, (xp < € < Xpyq)-
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By little interval At and monotonous changed y in this interval may
receiver

fe) ~—
) x —,
Yav
where
Yt Vi1
Yav = T
Then
X
At = —,

Yav
In fig. 5.3 several phase portraits for linear circuit (free running)
and special points and graphics of dependences x = f(t) (for one phase
trajectories), which define accordance phase portraits, are shows.
Let’s conceder circuit fig. 5.1, a and construct phase trajectory of

transient processes for its (accounted forts regime).
y x

Fig. 5.3. Phase portraits and graphics of dependences x(t)
in linear circuits (free regime):
a, b — non subside oscillations; ¢, d — decreasing oscillations;
i, f— increasing oscillations; increasing aperiodic processes;
g, h — decreasing aperiodic processes
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Let’s differential equation (5.1) in form
di 1
dt  L[U-ri- f(D] (5.8)
Give different meaning of i, and find accordance meaning di/dt
(fig. 5.4). Giving graphic testifies about aperiodic increasing character
of transient processe witch steady state meanings di/dt = 0, i = .
Dependence i(t) can be receive from fig. 5.4, if segment on
abscissa from 0 to I, to divide on small intervals Ai, fined yg,, =
(di/dt) 4, and determine accordance meaning At.

di
dt

U
L

0 i
Fig. 5.4. Phase trajectory of transient processes
in circuit fig. 5.1, a

5.5. Method of successive approximations

These method consist in successive closer definition privies
receiving a different way initial approximation. Founding of this
approximation is very cumbersome and difficult operation.

Let’s consider circuit of fig. 5.1, a. Let’s substitute nonlinear two-
port NT (r) and linear resistance r for equivalent nonlinear two-port,
using method of summing up volt-ampere characteristic. Characteristic
of equivalent nonlinear two-port i (u, + uyr) is showed in fig. 5.5, b.

Differential equation of these circuit

di
uL+urNT=La+f1(i)= U (59)
is nonlinear, but it is possible in the first approximation to laniaries it by
means substitution curve i(u, + uyr) by strait line i'(u) (fig. 5.5, b).
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This line goes through beginning of coordinates and point on
characteristic i(u, + uyr), Which corresponds of study state conditions.
All resistances are linear in these regime then study state mining

U

U
= =— (5.10)
Tist T+ Tnrst

where
st = tg (08

11 iU+ tyy)

//

i I(u)
v /7 c’

b
Y
/

f

Fig. 5.5 Method of successive approximations:
a — graphics of dependences i(t);
b - VAC i(u); ¢ - graphics of dependences u(t)

Differential equation for such circuit is linear

!

l
LE"'rlsti, =U. (5.11)
Solution of these equation

i'=1(1-e‘%f). (5.12)
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Let’s construct graphic of dependence i'(t) for linear circuit (fig.
5.5, a). Let’s used nonlinear characteristic i(u, + uyr) for founding
points of curve u'(t). Graphic construction of dependence u'(t) is
shown in fig. 5.5 for two points (a and b). That is way, we perform the
first stage of closer definition solution. Here we used non strait line i'(t)
(see fig. 5.5, b), but initial nonlinear characteristic i (u, + uyr).

Graphic of dependence u'(t) is constructed for next closer
definition of solution. Using expression (5,9), we get

t

o1
l—zf(U — u)dt. (5.13)

0
That allows to use method of graphic integration and find
correspond current i, (fig. 5.5, ¢) for the arbitrary time moment ¢, (with
accounting of scale)
Sk
k=" (5.14)
Assuming different times moments t;, t, e.g., may by find
meaning of currents i;, i, e.t.c. and construct in fig. 5.5, a new curve
i"(t), which exactly shows express dependence current from time, then
approximate function (5.12). Using this curve and nonlinear
characteristic i(u, +uyr) We can construct dependence u"(t), as it
shows in fig. 5.5 for two pointes (c and d).
Further again assume meanings of time and more accurate
dependence i(t). It is necessary to note this demands verification on
convergence.

5.6. Mating intervals method

Idea of mating intervals method consist in breaking the process on
series following one after the other intervals, inside of which transient
process may be exactly or approximately writing down by linear or
integrate nonlinear differential equation. Integrate constants in this
equation are define from limit conditions, accounting demand of
solution continuity (this operation is cold mating).

Mating intervals method is universal, but calculation becomes
cumbersome for the circuit of the high order and by long during

112



transient processes and by necessary high exactly be means decreasing
of select intervals. By calculation can by computers but method of final
intervals is more comfortable.
Let’s conceder mating intervals method for the circuit fig. 5.1, a.
Let’s divide volt-ampere characteristic on section for the piece
ways linear approximation (fig. 5.6, a). Then:

1 1
i i

u, u 0 ¢ [
a b
Fig. 5.6. Mating intervals method:
a — piece — wise-linear approximation of VAC;
b — graphic of dependence i(t)

For the first section

—_— i1 — u .
' 251 B r’
u
r=—; (5.15)
51
u=ni. (5.16)
For the second section
.. =1y !
i=h+——@Wu-w) =i + ;
uz - ul rz
Uy — Uy
T =7 —; (5.17)
lp = 14
, T2
u=ni+uy (1——). (5.18)
L1

Using receiving meanings, we get instead equation (5.1) two linear
equations:

For the first section

di
For the second section
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il g (1 7”2)—19 (5.20)
ritritlo= Uy ) = E2 .

byi; <i<ipt; <t<t,.
Solutions of differential equation for these sections are:

=B 4T byose<t 521
1= = Tr 1€ y =t =11, ( . )
i=—f2 e P by <y (5.22)
— 2 y 1 =1 =1 .
Integration constant A, is find from condition, thatby t = 0,i =0
E
Al = — 1
rn+r
Then for the first section
E1 _mt
i= (1—e L ),by 0<t<t,. (5.23)
rn+r
Substitution in this equation i = i; and t = t; gives
El it rt
i = (1- e T ) (5.24)
rn+r
where find time moment
£, = 1 (1 rl”') (5.25)
T o4 " E, i) '

Integration constant A, is find from equation for the second
section.
Byt=t,andi=1i,
E;

T

Ay =iy —
Equation for the second section

E E _ntr..
[=—2 +<i1— 2 )e T by b <t <ty (5.26)
r, +r rn+r
Time moment t, is find from condition, that by i =i,, t = t,.
Than

EZ EZ _T1+T (t —t )
[, = 1 — L2 5.27
f2 r2+r+<ll r2+r)e ’ (5:27)
where from we find time moment t,:
t,=t L [1+r2+r(' ')] (5.28)
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Using equations for the different sections we can build dependence
i = (t) kind of which is shown in fig. 5.6, b.

5.7. Fined increment method (of successive sections)

Given method is more common method (numerical integration), but
it demands the large work expenditure. Time interval are divided into
enough little time intervals t ( integrate step) and differentials changed
by final increments during of this time interval. Further transfer to the
Taylor series for the solution of differential equation. As Taylor series is
infinite then its necessary to limit the same numbers of its component. If
the lower first component has second order, then method is name
method by Euler.

Receiving pointers can be trace on graphic. If this pointers are strait
line. Then this method is named Euler method. For more exactly
solution equation between pointers may be method by Adams and
method by Runge-Kutta. All these methods (Euler, Adams, Runge-
Kutta) have general name “Fined increment method or method of
successive sections”.

Let’s considere circuit in fig. 5.1, a. Characteristic of nonlinear
two-port is shows in fig. 5.7, a.

i

Sl SG) £G) - VTR N G
LA

——

a b
Fig. 5.7. Fined increment method:
a— VAC; b — graphic of dependence i(t)

Nonlinear differential equation (5.1) may be represented in form
(5.8).
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Let’s change derivative di/dt by relation of final increment. We
get approximation equation

~ % [U-ri- f(D)]AL, (5.29)

Let’s divide transient processes time into row of small intervals At.
Then we get for any (k+1)-th interval (k=0, 1,2 ...)

1
Alpyr = lgy1 — g = Z[U_ ri — f(G)]At, (5.30)
where i, and i;,; — instantaneous meanings of current in beginning and
in end of considered time interval.

That is way, it’s possible step by step to calculate row of
instantaneous meaning currents: using initial meaning current i, may by
define current to the end of the first interval i;and using meaning i; —
current i, etc (fig. 5.7, b).

It’s comfortable to perform calculate in table form, for example
table 5.1.

Table 5.1
K | & = kAt | i | Ti | fQ) — Tl = fQ) [Blgyq | bgpq = G + Blgeyy
0 0 ip | O 0 U Aiy B = A
1) ty=At | iy |riy | f(iy) —ri; — f(iy) | Ai, i, = Ai,
2 |ty =2At | i, |1iy | f(iy) —ri, — f(lz) Al iz = Aij

Result of solution is more exactly (see fig. 5.7), when time interval
At is lesser. But if total number of intervals is increase the common
errors of calculation is increase too. That is basic shortage of this
method. Before named may be very little by using computers.

5.8. Method of state space

Differential equations by calculation transient processes in the
nonlinear electrical circuits can be compile as in classical form and in
form of “state equations*.

Selecting of variable in Kirchhoff equations for nonlinear circuits
have the same peculiarity. If circuit includes one or the same
nonlinearity, then as variables comfortable to take not current and
voltages but flax linkages and charges as in linear circuits because
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characteristics of nonlinear reactive two-ports are given in form weber-
ampere or charge-voltage characteristic. Besides, if characteristics of
nonlinear two-ports consists breaking off the first order, flax linkages
and charges hasn’t jumpers on the this section of characteristics.

Order of equations in the nonlinear circuit coincides witch quantity
reactive linear and nonlinear reactive two-ports. For example, circuit
witch one inductance is described by nonlinear differential equation of
the first order

fl( iad qm)—o (5.31)
This equation it’s necessary by weber-ampere characteristic of two-
port.
v = (), (5.32)
which may be given analytically, graphically or in form table.
Equation (5.31) can by ratting down in form state equations.

dy
— = (0. (5.33)
Selection form of writing down for nonlinear differential equation
defines by method of solution for that problem. Let’s used method of
numeral integration for calculate of state equations.
Let’s considered circuit in fig. 5.8. Lets Weber-ampere
characteristic ¢ = f;(i) or i = f,({). Choose flax linkage as state
space . Right down state equation

dy
2 = U-rf(W). (5.34)
Solution of this equation
t
W = (0) +fUdt rffz (W)dt. (5.35)

Let’s solve this equation by numeral method, taking step of
integration T current i = f, () as constant. Then for the same k-ht step
of integration we get equation

W[(k + 1)T] = W(kT) + UT-ri(kT)T, (5.36)
where i(kT) = f,[W(kT)].

From structure of this equation, for solution initial equation (5.34)
was used method of finite increments (sequence intervals).
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Fig. 5.9. Nonlinear circuit of the second order

Let’s calculate transient processe in circuit of fig. 5.1, a, where
nonlinear two-port have volt-ampere characteristic in fig. 5.1, b. Here as
state space we may chose current i. Then state equations

di r 1

. 1 .
a=—zl+zU—ZUNT(l), (537)

where Uyy (i) — is characteristic of nonlinear two-port.

Solution of equation (5.37) is
t

Por (t=7) 1 T
eL Udr —Zfe L Uynr(Ddz, (5.38)
0

LTy 1
i=e L i(0)+- f
L 0
where i(0) — initial condition.
Assuming the same assumption (constancy voltage on nonlinear
two-port of integrate step), we get rated formula
T

o |
i[(k + 1DT] = % 1 (e - 1) (-5)u-
1, _r

L
T
—(eTT - 1) (— ;) Uy (KT). (5.39)
The circuit of the second order describes by two nonlinear
differential equation of the first order or one equation of the second
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order. Let’s in circuit all three to ports are nonlinear. Their
characteristics are:

U=f(0) ori=fU); (5.40)
¥ =f3(i) ori=f(¥); (5.41)
Q = fs(uz) or uz = fc(Q). (5.42)
For this circuit may by right down the next equation
—Q =5 (5.43)
f1(D) + + f6(Q) = (5.44)

This system can be lead to one nonlinear differential equation of
the second order. Differentiating equation (5.44) (in according rules of
differentiation of no open function) and to take the placing (5.43), we
get

d*y  rdfidfs dll) ll)(,
— = 4
az dl,l)] at T ag W= (5:45)

This system may be writing down in form state equations

d d
Doh Wy =AW L@ +U. 540

Circuit mcludmg, n nonlinear reactive two-ports, is rout down in
common with help system of nonlinear differential equations of the first
order. If variables are state variables, then state equations of the circuit
in matrix form are rout down as

dX/dt = A(X)X + BW, (5.47)
where X — state vector of n-th order, which includes currents of
inductive two-ports and voltages of capacitance two-ports (or flax
linkages and changes); A(X) — matrix of the coefficients with seize
n X n, elements of which depends on state variables; B — matrix of the
constant coefficients with seize m x n (m — number of voltages and
currents sources); W — vector of voltages and currents sources.

5.9. Methods of averaging

Methods of averaging are based on assumption, which not always
possible: parameter of the circuit is changed very small and therefore it
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may be assume constant on this interval and equals its averaging
meaning.

Primitive variant of such method is first approach, where value of
impedance of nonlinear two-port is assumed constant during all
transient processe. But this impedance is defined very rough, since
averaging is performed only between initial and final meanings.

These methods are more develop for alternative and common
periodic currents, where any circuit coordinate (envelope of sinusoid
amplitude, constant component) is changed low and may be assume as
constant value.

By slow changing of amplitude envelope allows to perform variant
of averaging methods, which is cold as method of slowly changing
amplitude. Mathematic operations of this method reduce to presentation
of envelope in form harmonic series and equation of the circuit is
integrated in bound of period. Then all harmonic component gives zero
and only enough simple approximate solution, which corresponds to the
constant components and which showing the changing of basic (first)
harmonic amplitude in transient processe (without components).

For circuit of periodic current with constant component the
correspond variant of averaging method (method of slowly changing of
constant component) gives approximation solution for constant
component (without alternative component).

As example let’s considered the problem.

Problem 5.5

Capacitor which capacitance € = 100 mcF is charged to voltage
U = 40V. Define current by discharge this capacitor on nonlinear
resistance two-port, characteristic of which is given in table 5.4.

Table 5.4
U V |0 5 10 20 30 40
I A |0 0,05 0,11 0,22 0,295 0,33

Solution.

Let’s we used method of successive approximations for solution.

Let’s linearize of volt-ampere characteristic of nonlinear two-port
in accordance fig. 5.10, b.
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te 004 003 002 001 0 10 20 30 40 U,V
T T T

I 0,01
& Uy,
E() u, l} ¢ NTI;/:I r l 0,02

Fig. 5.10
a — graphics of the dependence i(t); b — VAC and its linearity;
¢ — circuit; d — graphics of the dependences u(t)

Find dependence uyy(t) = u,(t) for linear circuit. It’s known,
solution of equation for rC — circuit in free regime is

t
u,p=Ae Pt = Ae’T,
where r = 40/0.33 = 121.2 Ohms; rC = 121.2-100-10 = 0.012 s.
Using independent initial conditions u.(0) = 40 V and equation of
the circuit us + u;, = 0, find (account , the forced component of voltage
equals zero)
u, = —40e 7833ty
or for comfortable construction
u, = 40e~833ty,
Let’s construct voltage uyr(t) in fig. 5.10, d (curve 1) using dates
of table 5.5 (first approximation).
Then voltage uyr(t) is carried on VAC (fig. 5.10, b). We get the
first approximation of current i(t) (curve 1. fig. 5.10, a).

AS U, = uyr =% fotidt (on absolute value) it is possible fined
second approximation of voltage uyt(t),if calculate area under curve

it).
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Table 5.5

The first The second . L
P U The third approximation
ts approximation approximation
u, VvV i, A 8,2 u, VvV i, A S,2 u, Vv i, A
mm mm
0 40 0,33 0 40 0,33 0 40 0,33

0,005 | 26,5 | 0,275 600 25 0,265 | 590 25,3 0,27
001 | 17,5 | 0,195 1040 14 0,13 | 1011 | 14/7 | 0,165
0,015 | 115 | 0,125 1360 6 0,065 | 1200 10 0,11
002 | 75 0,08 1540 15 0,015 | 1320 7 0,075
0,03 | 33 0,033 - - - - 3,3 0,033
004 | 15 0,015 - - - - 15 0,015

Then account non zero initial conditions we get
5-107%-5-107* s
upr () = uyr(0) —omS = (100109 §=25-10738,V,

where m — scale along access current and time.

During second approximation of the voltage (curve 2, fig. 5.10, d)
we found second approximation of the of the current (curve 2, fig. 5.10,
a), and then the three approximation of the voltage (curve 3, fig. 5.10, d)
and three approximation of the of the current (curve 3,fig. 5.10, a).
Results calculation are given in table 5.5.

Problem 5.6.

Series connection of inductance L =0.08 H and nonlinear
resistance two-port, characteristic of which is given in table 5.3, are
connected join in constant voltage U = 40 V. Define current in the
circuit. It’s necessary the problem by method of successive sections.

Solution.
Let’s we substitute in differential equation of the circuit (fig. 5.11,
a)
L di +u=U
a4

derivative by relations of finite increments and receive approximation
equation
U— uy
L

Ai

Q

At.
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Let’s divide transient processe time on rang of small same intervals
At = 0.1mcs. Then for the any (k-th) interval we get
U - ul
I At.
Using volt-ampere characteristic of nonlinear two-port (fig. 5.11,
b), we perform calculate and compile tabl. 5.6.

lg+1 = I + Algyq =

Table 5.6
. U- . .
No tkv i, Uk, U-— Uk, %1 Alk+1l lg+1s
- ms A Vv Vv V/H A A
0 0 0 0 40 500 0.05 0.05
1 0.1 0.05 1.5 38.5 481 0.0481 0.0981
2 0.2 0.0981 3 37 462 0.0462 0.1443
3 0.3 0.1443 4.75 35.25 440 0.044 0.1883
4 0.4 0.1883 7 33 412 0.0412 0.2295
5 0.5 0.2295 10 30 375 0.0375 0.267
6 0.6 0.267 14.5 25.5 320 0.032 0.299
7 0.7 0.299 20 20 250 0.025 0.324
8 0.8 0.326 35 5 62 0.0062 0.33
9 0.9 0.33 - - - - -
Dependance i(t) is shown in fig. 5.11, c.

iA

0.4f

0,3F

U 0.2F
0,1+
e 10 20 30 40 a4V 1234567 110%
a b c
Fig. 5.11.

a — circuit; b — VAC; ¢ — graphic of dependence i(t)

Problem 5.7.

Series connection of resistance r =10 Ohms and nonlinear
inductive two-port are connected to source of constant voltage U = 1 V.
Define current of the circuit, if characteristic of nonlinear two-port is
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wrote down by equation i = 2. Solve problem by method of state
space.

Solution.

Scheme of the circuit is shown in fig. 5.8 and is circuitscribed by
equation (5. 34)

d
d—‘f = U-1£,, 1). (5.34)
Solution of this equation is (5.36)
Y[(k+ DT] =y (kT) + UT-ri(kT)T, (5.36)

where i(kT) = fo[W(kT)].
Calculate meaning of dependences ¥ (t) and i(t) are given in table
5.8, in accordance of which are construct graphics of fig. 5.12.

YW
0,3
0.1

0.2

0,05

I R R RO N RO N B e
0 01 0203 0405 06 07 0809 1.0

Fig. 5.12. Graphics of dependences ¥ (t) and i(t)

Table 5.8

K t=kT,s Y(kT), W i(kT), A

0 0 0 0

1 0,1 0,1 0,01

2 0,2 0,19 0,036

3 0,3 0,254 0,0645

4 0,4 0,289 0,0835

5 0,5 0,305 0,093

6 0,6 0,312 0,097

7 0,7 0315 0,0992

8 0,8 0,3158 0,0997

9 0,9 0,3161 0,0999

10 1,0 0,3162 0,09998
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Methodic instruction

By analyze and calculation transient processes in nonlinear circuits
its necessary to attention on certain particularity of this circuit.

1.

Nonlinear differential equation, which describe processes in
nonlinear circuits haven’t common solutions even for circuits
of the first and second order.

Superposition principle isn’t applicable to the nonlinear
circuits.

For nonlinear circuits standard test functions as single step
function 1(t) and delta function &(t), which completely define
reaction of the circuit on such action, aren’t existed.
Transference H(p) and frequency H(jw) functions aren’t
define property of nonlinear circuits.

Electro technical devices, constructed on nonlinear elements
are more diverse, then on linear circuits. Nonlinear circuits
allow construct such devices, realization of which in linear
circuits isn’t possible.

Offering methods of analyses and calculations of nonlinear
circuits can’t apply without preliminary understanding physical
processes in the circuit.

Literature: [ 4, 9, 10, 12, 14,15, 18, 20]

ONO O WN B

Questions for self checking

. What is Integrate method of approximation?

. What is Graphic integration method?

. What is Method of phase plane?

. What is Method of successive approximations?

. What is Mating intervals method?

. What is Fined increment method (of successive sections)?
. What is Method of state space?

. What is Methods of averaging
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6. BESIS OF TWO-PORTS THEORY

6.1.Basic notions and definitions

Electric circuits by the number of external terminals can be divide
into two-port, three-port, four-port and multi-port.

A two-port (four-terminal network) is called a part of an electric
circuit, that has two pairs of external terminals, through which it
connects to the rest of the circuit. In fig. 6.1 two-port N with external
terminalsl-1°, 2-2° connects to the other circuit.

external
circuit

external
circuit

external circuit

Fig. 6.1

Two-ports are classified according to various features (fig. 6.2).

Linear are called two ports, which haven’t nonlinear elements. The
two-ports are called nonlinear, if they contain at least one nonlinear
element.
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Passive is called two-ports, which do not have sources of energy.
The two-port is called active, if
its composition includes at least
one source of voltage or current.
If all the energy sources that are
part of the active two-ports are —| Linearn
autonomous (uncontrolled), then i
the  two-port is  called ——  Nonlinear

Two-ports

autonomous. If at least one of -

. —| P
them IS non-autonomous AsTve
(uncontrolled), then the two-port l Active

is called the non-autonomous.
Two-ports, which satisfy
the principle of reciprocity, _w
called reciprocal, otherwise — _
non-reciprocal. | Reciprocal
Symmetric are called two- |
ports, whose circuits are |—— Non-reciprocal |
symmetrical relative to the
vertical, conducted through the |

middle  of  the  circuits, [ Asymmetric
asymmetric — otherwise. Y |

Autonomous

Symmetric |

Fig. 6.2

Fig. 6.3 shows the schematics of the simplest two-ports. Two-port,
shown in Fig. 6.3, a (lower pass filter) is linear, passive, mutual and
symmetric, the two-port, shown in fig. 6.3, b (scheme of replacement of
the transistor with a source of current) — nonlinear, active, non-
autonomous, asymmetric, and in fig. 6.3, ¢ (circuit for replacing the
transistor with a voltage source) — linear, active, autonomus,
asymmetric. In fig. 6.3, d the outputs E, B, C corresponds to the emitter,
base and collector of the transistor.

The main purpose of the two-port is the transmission of energy
from the source to the consumer and the transformation of parameters:
amplification, attenuation, stabilization, frequency transformation,
phase, voltage, power, etc.

The main task of the two-port theory is to study its properties with
respect to its external terminals as well as the analysis of the work of the
two-port with the external circuits.
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The two-port with the outer circuit can be connected by regular and
irregular connections. If the two-port connects two independent parts of
the outer circuit (see Fig. 6.1, a), then it is considered passable and has a
fair relation to it:

=10 =1

Such a connection is called regular. If the two-port connects the
areas of one outer circuit (Fig. 6.1,b), then in the general case, such a
connection is called irregular

L#1, I #I.

The methods of the theory of two-ports are only related to regular
connections. At the input and output of the two-port there are two
voltages and two currents. The relations between them are described by
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a system of two equations, in which any variables from these can be
considered as independent, and the other two as dependent. As a result,
you can make CZ? = 6 pairs of equations, six systems of coefficients,
which are called two-port parameters.

6.2. Two-ports equations

Let the two-port terminals 1-1” (Fig. 6.4) connect the source of the
input electromotive force (EMF) with the internal impedance Einp, and
to the terminals 2-2’ the load Z;.

Let's analyze the scheme of Fig. 6.4 by the method of loop currents.

Zmp

ik

B2

N

Fig. 6.4

Denote loop currents at the input and output of the two-port via I,
I;;. We write the system of loop equations ina matrix form

Zinp + Zil Z{Z Eln + EI]
Zy Zy+Zy III = EII
Zny Zny ZNN lIN J

where Z1,, Z5, — the components of the complex |mpedance of the first
and second loops, which are determined by the actual two- ports N from
the terminals 1-1° and 2-2’ respectively; E{ — component of the EMF of
the first loop by the terminals 1-1’ of the two-ports.

From Fig. 6.4 of two-ports is clear that.

L=1;Iy= -1 Ein = i Zinp + Uy Uy = —1,Z;. (6.1)
Components
IIZinp = Ilzinp =Epn— Uy
in the right side of the first equation (6.1) and
IIIZl = —Izzl = —Uz.
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E;, in the left part of the second equation (6.1) we move to the
right part. Then, taking into account the expression (6 1)

Zinp Z12 v Zin [11] [EI + U1]
Iy Zy - Zan ||| rn U, (6.2)
Zn1t Znz2 -+ Znn [INJ Ey

The loop impedance matrix (6.2) is composed only of the
impedance of the actual two-port without taking into account the outer
circuit.

We have from system (6.2)

. Al ~r . All . . A21 . ANl

11 = —= (EI + Ul)_‘l' (EII - Uz)_+ +EN_7
A A A A
N Y Ay, &

—[2 :K:(EII+U1)T+(EII—U2)T EN A .
where A, Ay, Ay, Aqq, ..., Ayq, Aqa, ..., Ay, — determinants and algebraic
adjunct of the matrix of loop impedances in the system (6.2)

From formulas (6.3) it is clear that the currents at the input and
output of the two port are determined by the EMF and the smpedances
of not only their own but also the remaining loops of the two-ports. Let's
denote

. -ANl

I—E E— + Ey—:
IA HA+ NTp
Ay . Dy . Ays
I—E E— + E .
IA HA+ NTA

The currents I, and I, are determined by independent sources of
EMF E{, Ey, ..., Ey within the of two-port, that is, the system (6.3) can
be rewritten as

i1 _ [Yn Y12 110 (6.4)
I, Y21 Yzz 120 '
where
Ay Azq Ay,
Y11=T;Y12=—T;Y21=— A YZZ_T~ (6.5)

The coefficients Y;1, Y15, Y21, Y5, are determined only by passive
elements of the two-port circuit and are called the parameters of the
two-port.

Equation (6.4) is the equation of arbitrary two-port.
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6.3. Parameters of the two-port

Y- parameters. For a passive two-port

) ilO = iZO = 0
Then we find from the system (6.4)
Y11 Y12 Ul
i 6.6
[ ] Y21 Yzz U, (6.6)
or
[1] = [¥1[U], (6.7)
where
A _Aa
Y; Y, A A 1 A —Ap
vyl = [ 11 12] _ ] 6.8
] 1. Yo ﬂ @ A —A12 Ay ©8)
A A

Elements Y;;, Yi,, Y54, Y,, are conducts and are called Y-
parameters of two-port. The matrix (6.8) is a matrix of Y-parameters.
The system (6.6) can be rewritten in the usual form:

{il = Y1, U;s + V3,0 6.9)
_ _12 = Y51U; + YUy,
From here it is clear that
I I I, I,
1lg,=0 2l =0 1lg,=0 2l =0

that is, the Y-parameters can be determined experimentally by
performing a short circuit test at the input (U, = 0) at the calculation Y;,
and Y,, at the output (U, = 0) when calculating Y;, Y>;.

Therefore Y-parameters are called short circuit parameters.

For reciprocal two-ports Y;, =Y,,, ie A= A,;. For simetrical
two-ports A, ;= A,,.

Example 6.1.
Determine the Y - parameters of the two-port (Fig. 6.5).
1. Calculation method. Let's construct a matrix of the loop
impedance for the first (1) and second (I1) loops is shown in Fig. 6.5.
Z= —7,  Z,+ 74 (6.11)
From here
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A= (Zy+Z,)(Zy+ Z3) — 73 = Z1Z, + Z1Z5 + ZyZ3;,  (6.12)

DA1=2Z5 + 235 015= 25, Dy1= 25, Dyp= 71 + Z;. (6.13)
(1} jl |i| A jl 5

l\-jO

Fig.6.5

Now we obtain from formulas (6.5) taking into account (6.12),
(6.13):

v, =21 22+ 23 : 6.14

W N T 2 Zy+ 2075+ Zy75° .19
s Z ; (6.15)
12704 217y + 2125 + Zy 75" ‘
p, =tz _ Z2 - (6.16)
2T 2,7y + 2173 + Z,73° '

A Z+7Z
Yy, = —= 12 (6.17)

TN T ZiZy + 2125 + 2975
2. Experimental method. Execute in the scheme of Fig. 6.5 short-
circuit test on output terminals 2-2° (U, = 0):

: U, . Lz,
=il = -2
Z + ZZZ3 ZZ+ZS
Then
v I 0 1 Zy + Z3 '
11 — 5 - - = N
U1 U,=0 Zl + ZZZZ+ZZ33 Ul lez + le3 + ZZZ3
v I, B U, Z, 1 Z,
21 — 7 - = — = .
U1 U2=0 Zl + %224'23 U1 lez + le3 +ZzZ3

2 3
We execute in the scheme of Fig. 6.5 a short-circuit test on the

input terminals 1-1° (U; = 0):
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1 512
Th AR B ZleJrZZZZ
en
Y2 = 1—2 = Uz i = 4t 2y 5
Ualy,o 7, + % Uy Z1Zy+Z1Z3+ ZyZ5
U, U,=0 Zs + ﬁszzz U, 212y + 2123+ 2574

Z-parameters. From expression (6.7)

[0] = 171

[Ul] — [Yll YIZ]_l [11] (618)
U, Y0 Yo I,
The inverse matrix has the form
-1 _ [N 1/12]_1 _ i[ Y, —Y12] _ [211 Z12] _
= = [Y21 Yool WM-Yor Yool |Zp1 Zpo| 121, (6.19)
where [Y] — the determinant of the matrix Y-parameters from the
formula (6.8)

or

[Y] =Y11Ys, — YipYay. (6.20)

The elements Z,4, Z1,, Z»1, Z,, are impedances and are called Z-
parameters of the two-port. The matrix (6.19) is a matrix of Z-
parameters. Taking into account the relation (6.5) we obtain
[Z] = [211 le] A [Azz A21]

Zy1 Za _A11A22—A12A21 A Any

(6.21)

— 1 A22 A21]
A11,22 Az Apg
The ratio is used here
A11822 — A12851= D1122,
where A;q,, — is the double algebraic adjunct, obtained from the
determinant A by the striking out of the first and the other two rows and
columns.

From expression (6.21)
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B Az, ) _ Azq )
prm— 9 Z12 - b
A11A22 - A12A21 A11A22 — A12A21
by Ay
A_11A22 —D1p051° Ay14z; — A12A2_1 '
Thus, according to formulas (6.18) and (6.19), we obtain
Ul — |:le ZlZ] 11 (6 22)
U, Zy1 Zpnl|i, '
The system (6.22) can be rewritten in the usual form:

le

ZZl ZZZ

{Ul = Zy1 [y + Zy510; (6.23)
o UZ = 22111 + 22212.
From here it is clear that
Uy Uy U, U,
Z11 = I_ s Z1p = I_ s 2y = I_ 3Ly =4 ,(6.24)
1 12=0 2 11=0 1 i2=0 2 11=0

ie Z-parameters can be determined experimentally, performing the
experiment of without load at the input (/; = 0) at the calculation Z;,
and Z,, at the output (I, = 0) at the calculation Z,;, Z,,. Therefore — Z-
parameters are also called without load parameters.

We have from matrixes (6.19) and (6.21)

. Ay, _ Y2, . _ Ayq _ Yio .
Z11 = = s Z1p = = - ;
A11,22 Yi1Yo = Y1215y A11,22 Y11Y2, = Yi2¥og
A, Y1 Ay Yi1
Zy = = Zy =

A11,22 Y11Y22 - Y12Y21 ’ A11,22 Y11Y22 - Y12Y21 ‘
For mutual two-ports Z;, = Z,,, ie Ay,= A,;. For symmetrical
two-ports, besides this A, = A,,.
Y- and Z-parameters are dual. They are also called immittance
parameters.

Example 6.2.

Determine the Z-parameters of the two-port (Fig. 6.5).

1. Calculation method. Matrix of the loop impedances is shown in
(6.11). Definition of the matrix [Y] according to the expressions (6.14) -
(6.17) and (6.20) has the form

[Y] =Y11Y2, — V15Yo1 = Lt Lz

77 72 7272
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(o4 Z3)(Z1+Zy) — 25 ZaZy +ZyZ3 + ZyZ5

74 Z4
1 1 6.25
72 7,7y 4 2123+ 2,75 (6.25)
ZZ = lez + 21Z3 + Zzz3.
Using the expressions (6.14) - (6.17) and (6.25), we obtain:
Yoo Z4+Z; , ) Yio 7, , )
n =yt 22 L% = ZytZy; Z12:—m:ﬁz = Zy;
Y Z Ny Zh+Z;
In=—tq=pl =l i =fq=gn L' =Lt

2. Experimental method. Execute the without load on the output
terminals 2-2° (I, = 0) in the diagram shown in Fig.6.5. By that

AL S
1_Zl+Zza 2 — 1142-
Than
U U
le =_1 = .1 =Zl+Zz,
_ 112,
7 U, Lz, 7
21 =5 =——= 4
hle K

Perform in the circuit in Fig. 6.5 without load at the input 1-1°
(I; = 0). With

I, = Uy Uy =17
2 Zz Z3 > Y1 . 2442 .
U, Lz, U U
le —_— - . - 2 22 — —_— . —Zz+Z3.
Ll _, I Lli_, U,
v " ZZ— |Z3

A-parameters. In equations (6.6) for — the Y-parameters of
independent variables are the voltages U; and U, at the input and output
of the two-port. In equations (6.22) for Z - parameters independent
variables are the currents /; and I, at the input and output of the two-
port. We select independent alternating current I, and voltage U, at the
output of the two-port. We obtain the voltage U; and current I, at the
input of the two-port from the expression (6.6):
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( Y2 . i y [
U1 = __UZ +_12 = A11U2 _Alzlz;
Y51 Y21
. Y] . Y : (620
l[l = —Y—U2 +Y—12 = AUy — Ag2ly
21 21
where
Y,, 1 [Y] Y1y
Ay = =225 A= =3 Agy = — = Agp = —
11 Y, 12 Y, % Yy 2P Vo1

The elements A;;, A, Ay, A,, are complex transmitting
functions of the two-port from output to input and called A-parameters
of the two-port.

The expression (6.26) can be rewritten in the matrix form:

Ul — [All AlZ] UZ
jl A21 A22 _12
From expression (6.26) it is clear that

Uy Uy
A = U_ ; A = _f_ >
2lj,=0 2lg,=0
(6.27)
I I
Ayp = 0. ; Ay = A
2li,=0 2lg,=0

That is, A-parameters can be determined experimentally by
performing without load at the output (/, = 0) when calculating A,
A, and testing a short circuit at the output (U, = 0) when calculating
Agz, Ay

By the physical nature the parameter A, is a complex transmission
coefficient of voltage at no-load on the output, the parameter A,, is the
complex transmission impedance at the short circuit at the output, the
parameter A,; — the complex transmittance at no load at the output, the
parameter A,, is the complex transmission coefficient of the current in
the short circuit at the output.

For mutual two-port (Y;, = Y,4) there are ratio

Y112, _m _& -1
Y221 Y221 Y21

B-parameters. We choose the independent variables in expression

(6.6) the current I, and voltage U; at the input of the two-port. We

[A] = A11A; — A4 =
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obtain the voltage U, and current [, at the output of the two-port in the
expression (6.6):

(. Y1 - 1 ) ,
U, = _Y_U Y 11 By1Uy — Bioly;
12 12
< v (6.28)
I, = —5=U; + =1, = By1U; — B[4
\ Yi ' Yo
where
Yi1 1 [Y] Y2,
Bii=——; B, = ——; = : B,, = ——=. (6.29
11 v, b v, B le 22 Y, (6.29)

Elements By, By,, B,1, By, are complex transfer functions from
the output to the input and called B - parameters of the two-port.
Expressions (6.29) can be rewritten in a matrix form:

U, :[311 B12
I, By1 Bzz

From expression (6.28) it is clear that

U, U,
By = . ; Bip = A ;
1l =0 110,=0
I I
By = U_ ; By = —I-_ .
1lj, =0 1lyg,=o0

That is, B - parameters can be determined experimentally by
performing an without load at the input (/; = 0) when calculating B4,
B,, and testing a short circuit at the input (U; = 0) when calculating
Bi2, Baa.

By physical nature, the parameter B, is a complex transmission
coefficient of voltage an without load at the input, the parameter B, is
the complex transmission impedance at the short circuit at the input, the
parameter B, is the complex transmittance an without load at the input,
the parameter B,, is the complex transmission coefficient of the current
at short circuiting at the input.

For mutual two-port (Y;, = Y,4) there is a ratio

Y.V, [Y] Yy,
[B] By1B3; — B12B3y Y122 Y221 Yy, 1.

With Ay, = By,, A1, = Byy, Ay = By, Ay, = By;. A- and B-
parameters are called transmission parameters.
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H-parameters. We select the independent variables in formula
(6.12): the current I at the input and the voltage U, at the output. We
hold the voltage U; at the input and the current I, at the output of two-
port in its expression (6.6):

(. 1. Yio . . .
Uy = _Y_Il —Y_Uz = Hy1I; + HypUy;
11 11
Y, . [v] . (6.30)
llz - __U1 +_U2 = H2111 +H22U2
Y11 Yi;
where
1 Y12 Y1 [Y]
H4=—;Hy,=——; H)y =—; Hy, = —.
11 Y. 12 Y. 21 Y. 22 Yo,

Elements Hy4, Hy,, H,1, H,, are complex input, output and transfer
functions of the two-port and are called H-parameters of the two-port.
Expression (6.30) can be rewritten in a matrix form

Ul :[Hll HlZ] Il
jz H21 H22 UZ l

From expression (6.30) it is clear that
; Hyp =+

U U
Hy = 1_1 ; Hyp = _1 i
1lg,=0 2l =0 1lg,=0 I;=0

That is, H-parameters can be determined experimentally by
performing the without load at the input (/; = 0) when calculating H,,,
H,, and testing a short circuit at the output (U, = 0) when calculating
Hyq, Has.

By physical nature, the parameter H;; is a complex input
impedance at short circuit at the output, the parameter H,, is a complex
transmission coefficient of voltage without load at the input, the
parameter H,; is the complex transmission coefficient of the current in
the short circuit at the output, the parameter H,, is the complex output
admittance at the without load at the input.

For mutual two-port (Y;, = Y,,) there is a ratio H;, = —H,;; H-
parameters are widely for analyses transistors and transistor circuits.

Example 6.3.

In Fig. 6.3,b shows the scheme of replacement of the transistor
through its physical parameters a, r, = 1y, 1, = 1y, 1, = 13. Find its H-
parameters.
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We write the system of loop equations for the circuit fig.6.3, b. Pre-
convert the current source [ = af; to the voltage source E = [, =
aliry:

{jl.r"’ t(h+ L) =0 =0; (6.31)
—Ir, — (L + L)y, —E+U, =0,
or
{(Te + 1)l + 1yl = Uy
(rp + ar )y + (1 + )l = Us.
Usually in the transistor r;, <« 1. Then
{(Te +1p)ly + 10y = Uy
arly + 1y = U,.

Define I, from the second equatlon (6.32):

I, = r_ U, — al;. (6.33)

We substitute (6.33) in the flrst equation (6.32). Get the system

(. . Ty .
Uy=[+0- a)’"b]ﬁ"'auz;

(6.32)

1 (6.34)
iz = _ajl +_U2
T
Comparing equations (6.34) and (6.30), we obtain
Tp

Hyy =7+ (1 —a)ry; Hip = —; Hyy = —a; Hyp = —.

Tk Tk
G-parameters. We choose the independent variables in the
expression (6.6) of the input voltage U; and the output current /,. Find

the current I, at the input and the voltage U, at the output of the two
port:

(; Yipo. . .
11 = -3 Y_Iz = G11U; — G203
< 22 22 (6.35)
. Y21 1 .
kUz = —EU1 - glz = GZ1U1 Gozl3,
where
[Y] Yio Y1 1
Gi1=—; G, =—; G, = G,, = —.
11 Y, > U12 Y, > U21 v, U22 Y,
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Elements Gy4, Gi5, Gy1, Gy, are complex input, output and
transmitting functions of the two-port and are called the parameters of
the two-port.

The expression (6.35) can be rewritten in a matrix form

[11] _ [611 G12] [U1]

Uy| L1G21 Ga2l |1, |

From expression (6.35) it is clear that

I I

G11:'_1 ;G12:i_1 ;521:U I_ .
1lj,=0 2lg,=o0 1lj,=0 21y,=o0

That is, G - parameters can be determined experimentally, by
performing a short circuit test at the input (U; = 0) when calculating
Gy, and G,, and without load at the output (I, = 0) when calculating
Gy1and G,;.

By physical nature, the parameter G;; is the complex input
conductivity at without load at the output a, the parameter G,, is the
complex transmission coefficient of current at the short circuit at the
input, the parameter G,, is the complex transmission coefficient of the
voltage at without load at the output, the parameter G,, is the complex
input impedance at the short circuit at the output.

For mutual two ports (Y;, = Y1) there isaratio G, = —Gyq;

H- and G-parameters are called hybrid parameters; H- and G -
parameters of the two-port are dual.

All two-ports parameters are expressed in terms of Y-parameters. In
the same way, any system of parameters can be expressed through
another system.

Example 6.4.
Select H-parameters through A-parameters.
The system of two-ports equations in A-parameters using from
(6.26):
{U1 = A11Up — A1pDp;
Iy = A U; — Agzly.
The system of two-port equations in H-parameters of expression
using from (6.30)
{U1 = Hy11y + HypUs;
12 = H2111 + H22U2.
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From the second equation (6.26) we get

I

——1
Ay !

[ +

An
AZZ

U,.

We substitute (6.36) in the first equation (6.26), then
A21 .

U1 = A11UZ — A1z (

(410 -

Ay .
i+

A22

where

[A] = Ay143; — A4,

A22

22

A12A21) I
2

. :@.
Ay

I +

1 .
—— +—U)=
Ay b Ay, 2

[4]

A22

U,

(6.36)

(6.37)

B

That is, the expressions (6.36) and (6.37) can be written as a system
of equations

(g, -

X

2
A22

A22

j1+_

1.
L +

4] Uz;

iy
Ay 2

Comparing the systems (6.38) and (6.30), we obtain
A12

Hyy =— ,H;; =

A22

Table 6.1 shows the correlation of parameters for mutual
symmetrice two-ports, and tables 6.2 and 6.3 - the formulas for the
conversion of some parameters of two-ports through other.

[A]
4,

—Hy; =—
2

1

“H.. =
A22 s 1422

(6.38)

A21

Ay

Table 6.1
Two-ports Y Z A B H G
RECIpr00a| le = Y21 Z12 = Z21 [A] = 1 [B] = 1 H12 = _H21 GlZ = _621
Symmetric | Yy, =Yy, | Z1y = Zy5 | Ay = Ayy |Byy =By, | [Hl =1 [G]=1
Table 6.2
Y Z A
Lz T A _[A]
Y Y11 Y12 [Z] [Z] A12 A12
Yu Yo _fn Zu _1 A
(z1 2] A Ag
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P T
[Y] [Y] le Z12 A21 A21
_é E 221 ZZZ 1 AZZ
Y] [v] Ay Ap
h 1 4 1)

YZl Y21 ZZl ZZl All AlZ
Mo % 1z i Ao
Y21 Y21 Z21 221
1 Z 1) h A
Y. T Zyy Zyy [A] [A]
M FA Aoy Ay
YIZ Y12 ZlZ ZlZ [A] [A]
FNZ @ Za | Ax A
Yiu ¥y Zyy Iy Ay Ay
e[ 2 N R
Yll Yll ZZZ Z22 AZZ A22
M r 1 e | Al
Y50 Ya Zy; Z11 Apq Ay
_h 1 Zn _12] 1 A
YZZ YZZ le le All All

B H G
B 1 T | 0 6
BlZ BlZ Hll Hll GZZ G22
_IBl Bz Hy  [H] G 1
Blz Blz Hll Hll GZZ GZZ
By 1 Wl m, | LG
By1 Bjy Hy,  Hy, Giy Giy
6 by N S T
le le H22 H22 Gll Gll
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By B W A | 1 G
A [B] [B] Hyy  Hy G211 G2y
By1 By H, 1 G [G]
(8] [B] Hy  Hy G Gn
G| 6 G
B Bi1 By, Hy, Hy G, Gy
By B T I &
Hi; Hip Giz  Gpp
By 1 G G
H Bi1 Biy Hyy Hy [G] [G]
(5 5 o Hpo | _Gn G
Bii By [¢] [6]

By 1 ey i
G By, Bz [H] [H] Gii Gip
5 B, CH Hyo | G G

By, By [H] [H]

One-side dparameters. For two-ports, which have large geometric
sizes, for example, the communication lines, measuring voltages and
currents at the input and output of the two-ports is not convenient in the
experimental determination of its parameters. In this case,

One-sideds parameters are used, which represent a combination of
immittance parameters Y and Z:

1 U
Zix =5— =5 = Z11; (6.39)
le 'Il 1'2=0
1 U,
sz = === = Zzz, (640)
Yax I lj
1 U 1 (6.41)
1k Ylk 11 =0 Y11 5 .
7z ! % _ 1! (6.42)
Yok hly o, Ye ‘

For symmetrical two-ports (Z,1; = Z,,, Y11 = Ys3)
Zix = Loy = Ly, L1y = Loy = Zy.

143



Of the four parameters according to the relations (6.39) - (6.42),
only three are independent, since there is a correlation
Zis _ Zax
Ziw  Zox
In expressions (6.39) - (6.42) there aren't transfer functions.
Therefore one-sided parameters are obtained only for two-ports
description of reciprocal circuits.
Y-, Z-, A-, B-, H-, G-parameters and one-sided parameters are given
for two-ports don’t account influence of external circuit. Therefore, they
are called primary parameters.

6.4.Equivalent circuits for replacing two-ports
With systems of two-ports equations in Y-, Z-, A-, B-, H-, G-
parameters it is possible to construct equivalent circuits for replacing

two-ports. So the system of equations (6.9) in Y-parameters can be put
in correspondence with the equivalent scheme (fig. 6.6).

1
) nlmwo O ﬁ]y

Fig. 6.6

Here, the sources of the current Y;,U, corresponds to the second
component in the right side (6.9). The first component are provided with
conductors Y;4, Y5, and voltages U,, U,.

The scheme of Fig. 6.7 also satisfies the system (6.9).

I T 7

| S 2
sl KA A
el @

S

T

%

o



Really with a short circuit at the input (U; = 0)
Iy

1 = —Uz (- Y12) = Y12U2, Yi, =
U,

b

U1.=0
I
Iy = Uy (Y1 + You + Y1) = YouUy; Yoy = 0
2

Ul_O.
With a short circuit at the input (U, = 0)

.. 11
L =U; (N1 + Y, = Y1) =Y Up; Yy =

2

1 U2—0

Iy

U1 U,=0
That is, the parameters Y; ¢, Y12, Y>1, Y5, obtained correspond to the
relation (6.10), so the scheme of Fig. 6.7, satisfy the system (6.9).
For a mutual two-port (Y;, = Y5,), the circuit of the substitution is
simplified (fig. 6.8), since the dependent current source (Yy; — Y;5)U;
disappears.

Iy = =Uy (Y1) + (Y1 = Yi)Uy = Yo Uy Yoy =

I, -Hy be

| —
| S|
hith
nth

Fig. 6.8

Q=
[+] 8

Y 0

=0
o

The system of equations (6.23) in Z-parameters can be matched to

the equivalent scheme (Fig. 6.9).
1 4 jg

Zp 271
zuﬁ] zuf’Q Ozﬂfﬂ

Fig. 6.9

oo

9 9

=
RO

Here, a current source I2 with a parallel impedance Z;; can be

converted into a voltage source lelz = Z,,1, corresponding to the
second term on the right side of equatlon (6.23), the first term in which
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is provided by current I; and impedance Z;;. The current source @il

Z22
with a parallel impedance Z,, can be converted into a voltage source

%Zzzi1 = Z,11;, corresponding to the first term on the right side of

equation (6.23), the second term being provided by current I, and
resistance Z,,.

The scheme of fig. 6.10 also satisfies the system (6.23).

! I, G, Lyl N L2

LT (I \) —0
|;I:| Z, (Zor i)y b;

._
B

Fig. 6.10
Indeed, at idling at the input (I; = 0)
. . U,
Uy = 1215, Z1; = 5
21=0
. . U,
Uy = 132535 Zyp == .
' 2li=0
At idling at the output (I, = 0)
. . . U,
1y(Z11 — Z13) + 11215, = Uy; Zyq == ;
tli,=0
. . . U,
Uy —11Z15 — (Zy1 — Z13)11=0; Zy1 = I_ .
1li,=0

That is, the obtained parameters Z,4, Z1,, Z,1, Z,, correspond to
the relation (6.24), therefore, the scheme of Fig. 6.10 satisfies the
system (6.23).

For a mutual two-port (Z;, = Z,,), the scheme of substitution is
simplified (Fig. 6.11), since the dependent voltage source (Z,; — Z;) is
absent.

1 Zi-Zis LyrZp .2
© —0
Y [izu 0,
¢ °
1 2
Fig. 6.11
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The system of equations (6.30) in H-parameters can be placed in
accordance with the equivalent scheme (Fig. 6.12)

I I’
it AT
D, ﬁr“ Hllll D,

. H’?"f i
! Hnb&() () = :
< <
r 2"
Fig. 6.12

Here, the voltage source H,,U, corresponds to the second term on
the right side of the first equation (6.30), the first term in which is
provided by current I; and impedance H,,. The current source H,ql;
corresponds to the first term in the right side of the second equation
(6.30), the second term in which is provided by voltage U, and
conductivity Hy,.

The system of equations (6.35) in G-parameters can be placed in
accordance with the equivalent circuit of fig. 6.13. Here, the current
source Gy,1, corresponds to the second part of the right-hand side of the
equation (6.35), the first term of which is provided by voltage U, and
conductivity G,;. The voltage source G,,U; corresponds to the first
term of the right-hand side of the second equation (6.35), the second
term in which is provided by current I, and impedance G,,.

14 — b 2

Gy

Lo
- Gl -
g ﬁ] ® Do |

Fig. 6.13

o

Equivalent circuits for replacing two-port, built on the basis of A-
and B-transmission parameters, are usually not used.

6.5 Complex input and transfer functions of the two-port

The primary ones are called Y-, Z-, A-, B-, H-, G- two-port
parameters. They not depend on the outer circuit. Complex functions of
the two-port — the ratio of the voltages and currents on its terminals —
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taking into account the external circuit - are called secondary parameters
of the two-port. Consider them.
Input conductivity and input impedance

11 Ul
Yimi=Ym =51 Zin1 =Zin =5 (6.43)
Uy I
Output conductivity and output impedance
I U,
Ying = Your =55 Zinz = Zout = 5
U2 2

For Fig. 6.4 of the equations of the two-ports in Y-parameters we
have

{il = Y11U; + Yi,Us; (6.44)
I = Y5,U; + YU = YU
where
v = 1
L — Zl'
That is
Y21U; = —=(Ya, + YUy,
where
U, =— Y1 U,. (6.45)
Yo+ 7
Now we can find from expressions (6.43 — 6.45)
il Y12Y21
inl 4 U1 11 Y22 + Yl
On the principle of duality
Ul 212221

Zint = Zip = — = Zgq — i,
inl n Il 11 ZZ2 +Zl

Similarly, from the output clamps (for E;,, = 0)

12 Y12Y21
Yino = Your = U_ =Y —
2

where
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Finp = 7
Zinp
Transmitting function or transmission faptor by voltage
Ky = Kye'®v = Z—j (6.46)
where Ky, @y - the module and the argument of the transfer function on

the voltage.

For Fig.6.4 of the equations of the two-port in A-parameters (6.26),
taking into account the expression (6.45), we have:
U, U, 1

Ky =-= - — = (6.47)
VU0, AU, Al A+ A12Yl Y + Y,
Transmitting function or transfer factor by current
I
K, = Kjel®r = —1.—2, (6.48)

1

where K;, @; — the module and the argument of the transfer function by
current.

For fig. 6.4 of the equations of the two-port in A- parameters (6.26)
we obtain the principle of duality

K, L f ! Z21 (6.49)

! jl A2102 _A22i2 Alel +A22 ZZZ +Zl
Operating voltage ratio

U,
- - - Ein. - -
For Fig.6.4, taking into account the expression (6.47), we obtain
U, . ky
Zianinul + Ul 1+ Zianin
_ Y51
YootV Vo1

- Yin Yin \
1+2 Y, +Y ( 2 )
Yinp ( 22 l) Yinp
Transmitting conductivity and transmission impedance
I U,
Y,, = — -, = — .
tr U1 tr 11
For fig. 4, taking into account the expressions (6.46) and (6.48), we

obtain

KUW=

KUW=
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Y,U .
g—YIKU;
Uy
I,z .
_2'_1_211(1
Iy

Table 6.3 is given expressions for calculation circuit complex
function of two- ports through Y- and Z-parameters and using
determinants of matrixes loop impedances (MLI) and matrixes of node

conductivity (MNC).
Table 6.3
Function Y,Z MLI MNC
v = 1_1 IRLTALR D11 +Z1A11 22 A+YAy,
", oYyt A+ ZiAg A11 +Yids1 20
7 ﬂ 7 Z13Z51 A+ Z)Ay, A1y + YAy 2,
o Y Zy+ 2 A1y +ZiA1122 A+YAy,
v 1_2 Yoo — Y12Ys1 B + Zinphi1 2z A+ Yinplhia
T, | P YtV A+ Zinphyy By + YinpBis22
;- ﬂ 7. _ Zy3Zy A+ Zipphia Bz + YVinpBi1,22
out jz 22 le + Zinp A22 + ZinpAll,ZZ A+ YinpAll
P 7 R
A Vo, + 1 A+Z)Ay, Ay + VA2
& = _i_z Zy Aqp YA,
T Zy+2Z A1y +Z1 D11 22 A+YAy
v = _j_z A Aqp YA,
r U, Yoo 1 A+ 77y, A1y + YAy
7 & Z1Zy ZAqp Aqp
T Zy+2Z A1y +Z1 D11 22 A+YAy

6.6. Characteristic parameters of the two-port

Characteristic parameters are convenient for the description of such
types of two-ports as lines of communication, lines of delay, filters and
others. They are used to describe the mutual two-ports. There are two

types of characteristic parameters:

characteristic transmission coefficient.
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The characteristic impedancesZ,,, Z, are the impedances between
the terminals 1-1° and 2-2’ respectively (see Fig. 6.4), in which the
conditions of the matching are in place:

Z12271
Zin = Zinp = Z11 — : (6.50)
in inp 11 ZZZZ+ Zl
12421
oyt =21 = Zpy — ——o. (6.51)

In this case there is no disturbance of the signal when it passes
through the two-port and in the load the maximum power is transmitted.
Then
Zey =Zip = Zinp;
{ZCZ = Zoyt = ;. (652
Substituting expressions (6.50) and (6.51) in (6.52) and taking into
account the correlation of the table 6.1, we get

_ . _ ZZZ
ch - lezlka Zc2 - Y_a (6-53)
22
or through one-sided parameters (6.39) - (6.42) we have
Zey = \ZixZags Zez =\ ZaxZok (6.54)

For symmetrical two-ports (Z1x = Zoy = Zy, Z1x = Zog = Zy)
Zeyn=Z2p =272, = Y, ZyZy.
Characteristic transmission ratio y is determined from the ratio
. Uy
Kyk; = 2| -2 ) =e 2. (6.55)
U\ L
Substituting expressions 6.47) and (6.49) into (6.55), we find
1 (Yo2 + 1) (Z3 + Zl)]
y=zIn|- :
2 Y21ZZI
If in the load matching, in accordance with the expressions (6.52)
and (6.53)

Yo L2z
ZZZ

2
= (\/ ZyY + 1)

Yoo +Y)(Zya +Z) = Yor t

and from tabl. 5.1

151



YT = Yiz1 _ Y11V — Y] _ Y1122 _
S '] [Y] [Y]
=ZyY0, —1 =211, — L

Then
1. JZ Y +1 1 JZY,+1
y==-In——m—=-ln—0oc"F"——. (6.56)
2 leyll -1 2 vV ZZZYZZ -1
By the formulas (6.39) - (6.42)
Z
1 2
LY =31 ZnYn =
] 1k 2k
Then from the expression (6.56)
1 1+ Zik 14 [k
_ le _ ZZx
y==In =—=In . (6.57)
2 1— Zik 1— @
le ZZx
By analogy with the ratio
thy = ~1n 22
arcthy = > ny T

From formula (6.56) we find an expression y due to hyperbolic
functions
y = arcth,/Z;,Y;, = arcth,/Z,,Y,, . (6.58)
In general, the characteristic transmission coefficient is complex
function
Yy =a+jB, (6.59)
where o — the actual attenuation of the two port, B — the phase
coefficient.
To find out the physical meaning of the values a and 3, we will
express Ky and K; through a, B, y. In the load matching.
Uy = Ilzinp =1Z:;Up = —1Z) = =1 Z,.
Then, by the formula (6.55)
=&<_’._2) _UlhZa UiZa_ ola
0\ 1) U1ZoU U2Zo "Zo

Z
Ky = |=2e. (6.60)
Zey

where



Similarly

Z
KI = L18_‘]/.
Zcz
From expression (6.60) can be written
KU — @ef%ﬂpczﬂpcz)e—(o&jﬁ) — @e—aef(ﬁ‘l'(pcz;pcz)_ (6.61)
cl ch

Similarly (6.61) you can write the expression K;.
For a symmetrical two-port
ZCl = ZCZ’
SO
KU - KI - e_y = e_(a+jB).
From here
U, L 1.8
a=In-—=In+—==-In—
U2 12 2 SZ
where S; = U, 1;, S, = U,I, — the total powers at the input and output of
the two-port.

Thus, the attenuation coefficient o determines the ratio of the
voltage or current amplitudes at the input and output of the two-port,
and the phase coefficient  indicates phase shift between the voltages or
currents at the input and output of the two-port.

The unit of attenuation « is Neper (Np). For % =e, Ine = 1Np,
2

that is 1Np is the attenuation at which the amplitude of the voltage or

current when the signal passes through two-port decreases in e times
The unit of the coefficient a may be Bell (B). For example

% = 10%17110 =1, that 1B is attenuation, in which the signal power,

2

when passing through the two-port decreases by 10 times.
Note: 1Np = 0.869B = 8.69dB; 1 decibel (dB) 10 is less
times than 1B; 1dB = 0.1B = 0.115Np.
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6.7. The equations of the two-ports in hyperbolic functions

Let's express A-parameters of the two-port through of its
characteristic parameters. From expressions (6.53), (6.58) and tabl. 6.1

we get:
le A11A12 ZZZ A22A12
Zan= |5 = |75 Ze2= |5 = |75 (662
Y11 A21A22 Y22 A21A11
A11A22
= arcth,/Z;,Y;; = arcth |[——
Y arc 11111 arc AZlAlZ,
that is
A11A22
cthy = . (6.63)
A21A12
From the expressions (6.62) and (6.63) we find
( Zy
| A = Z_ZCh Y; A1z = \/ Zc1Zeashy;
Cc
(6.64)

A L chy: 4 Zez
= ———8§ ; = e —
21 m Y 11 ch
Thus, according to formulas (6.26) and (6.64) we write the system
of their equations in hyperbolic functions:

. ’Z . ,
Ul = _ZC1 (UZChy-l_ZCZIZShY);
c2

. 262<U2 . )
I = |=—|==shy+I,chy)].
! ch Zcz 2

chy;

6.8. The simplest two-ports

Ideal transformer (Fig. 6.14). This is a two-port, which does not
dissipate and does not accumulate energy, that is, the ideal transformer
is a passive device.

154



Powers at the input and output of the transformer are the same:

L h L by
l J
1 28
Fig. 6.14
Ugly = —Uzlp
Transformation factor
U L2
n=—=-—-,
Uy L
SO
Uy = nuy;
{. L
L= nI'Z’
or
. n O01r - .
Ul — 1 U2 — [All AlZ] UZ
I 0 " -1, Az1 Axl|-L|
That is, the equation of an ideal transformer is expressed in A-
parameters.
If
I U
Y&1::T£ - 0, 211::—-1 - 0,
Usly, -, I

ip=0

then the ideal transformer does not have Y- and Z-the parameters.
Gyrator. This is a device that in most cases has a theoretical

interest. Almost a device with properties of a gyrator can be constructed

on microwave elements (MWE), as well as by means of transistors.

i 4 X 5L 2

Lo O

: :
Fig. 6.15

155



The gyrator (Fig. 6.15) is described by the ratio
Uy U

—,—:,—:k, (666)
L2 L1
where k — the coefficient of gyration.
From expression (6.66)
u1 = _klz,
or
U, 0 —k Z11 Z12 I
= . 6.68
[Uz] [k 0][ ] Zy1 Z2 [12] ( )
That is, the equation of the gyrator is expressed in the Z-
parameters.

In the matrix Z-parameters of the girator (6.68) Z;, # Z,,, that is,
the girator does not satisfy the principle of reciprocity.
If the powers at the input and output of the gyrator are the same

Ugly = —Uply,
then the gyrator is a passive element.
From expression (6.66), if Z; = —?, then
2
, Uk _ k2
inl — I~1 - & - Zl
k

Thus, the gyrator converts the impedance Z; at the output

2
impedance to the input impedance ';— At k =1 the impedance is
l
inverted into conductivity. For example, if, Z; = jwL tihen Zi = MLL =
l
1
capacitance 1F at the input.)
The gyrator in the theory of circuit was introduced in 1948 by
Telegen.
Negative Convertor (KNI). This is a device that allows you to
convert any impedance of Z; into impedance —Z; with opposite sign.

The negative impedance converter is described by the ratio

ie C. =L (inductance 1H at the output is transformed into

Y (ﬁ) (6.69)
i1 —iy
Condition (6.69) is satisfied with
Uy = kuy; iy = —k(=iy), (6.70)
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or

[ ] [k —k][ ] ﬁi jz [UIZZ] (6.71)

In terms (6. 70) and (6.71), the coefficient k is simultaneously the
transformation factor of voltage and current, that is, KNI can transform
power.

6.9 Complex two-ports

Two-ports are called complicated, which can be represented as a
combination of several simple two-ports. If known parameters of simple
two-ports, then you can express complex parameters. There are several
ways of connecting simple two-ports in the formation of complex two-
port.

Series connection (fig. 6.16).

1 & I L I
o | N'||w
U, . - U,
Ir I
o N " oy
Fig. 6.16

With
0y _ (0], [or] _[os+ ov) [ [E] [
0, = UZ oyl = log+ oy) 1) = lis] = lig |

Uy _ [211 Z12] I _ { Z11 Ziz] n [21'1 Z{’Z]} I
U, Zy1 Zypl|, Zy1 Zaal 123y ZD L)
That is, with the series connection of the two-ports their matrices of

Z-parameters are summed up:
[Z] = [Z'] + [Z"].

then
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Parallel connection (fig. 6.17)
i A

A A A VAN I I

G ir ir t
7 o | N"| o e
Fig. 6.17
With
] H [ug]’H=H i
then

il — Yll Y12 Yll Y12 + [Yllill Yllé]} Ul
I Y1 Y Y21 Y22 Y1 YD) |0,
that is, at the parallel connectlon of the two-ports their matrices of Y-

parameters are summed up:
[Y]=[Y1+[Y"].

Series-parallel connection (fig. 6.18)
1 4 I I,

o—s—o0——1

Gloe | N'| o) 3

Il” 12" 2
P N B
. - (44 -
Dl" L,lrr N L,'Z " bt
o——o—
7
Fig. 6.18

With

Ll el o)=Ll
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[H11 H12 H11 Hiz] H{’1 Ht’z
Hzq sz H21 H3,l  1HZ)
That is, in the case of a series-parallel connectlon of the two -ports,

their matrices of Y- parameters are summed up:
[H] = [H'T+ [H"].

Parallel-series connection (fig. 6.19).

Fig. 6.19

With
AN v [0
A Uz oy| = og +oy) “ iyl

[Gll GIZ G{l G{Z:l
G21 Gzz Gz1 Gy Gé'l Gé'z

That is, at the paraIIeI -serial connection of the two- port their
matrices of G- parameters are summed up:
[6] =[¢'T+[6"].
Cascade connection (fig. 6.20).

then

h=1I 1 I Iy=I, 2

U=y N ry o Nn tr=0;

1
[

|

Fig. 6.20
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With

o= L[ =[5

[Ul] — A11 A12 [ ] [All A12 [ 11 ’1’2][U2]
L] 1A21 Az Ay A%llAy Anl(-I

That is, at the cascade connection of the two-ports, their matrices of

A-parameters are multiplied in the order of the location of the two-ports:
[A] = [AT][A"].

Of great practical importance is the cascade connection n-th
number of two-ports with characteristic transmission coefficients vy;,
Y2,..., Yn @and characteristic impedances Z., and Z.,, Z., and Z.5, ...,
Zep and Z 44 (fig.6.21).

then

1 il jz js I 2
o— 1 s i S
‘t‘; N, || N, |o ol N, | ¢ ‘
i, A ,
A Z, 3 Z, Zow1
Fig. 6.21

The characteristic impedances of two-ports are matched, that is, the
load Z; is matched with the output characteristic impedance Z,,_, of the
n-th two-port. Its input impedance is equal to the characteristic
impedance Z., and is matched witch load of n-1 two-port etc. Input
impedance of the first two-port also equal characteristic impedance Z.; .

For the fig. 6.21 according to formula (6.60)

) U Z .
KU — 1.1+1 — cn+1 ey’
Ul ch

where, y =y; + y, + -+ + 7y, that is, the cascade connection of two-
ports is equivalent to single two-port, whose characteristic impedances
are equal to the input characteristic impedance of the first and the output
characteristic impedance of the last two-port. The characteristic transfer
coefficient of the resulting two-port is equal to the algebraic sum of the
characteristic coefficients of transmission of the individual two-ports.

160



Example 6.5.

Find A-parameters of the two-port according to the circuit in Fig
6.22.

Fig. 6.22

Let us introduce the circuit in the form of a cascade connection of

simple two-ports I-1V (Fig. 6.23); A-parameters for each of them are
obtained by the formula (6.27):

< O
1

< ¢

Fig. 6.23

(A = | A =[5 7] = Aty A%
Ay Al "l 1l A‘z‘l AL,

1 0
1 .
—+ju)C 1]’

[4] = [A[4"][4"][41V] = [1 &1

0 .
+]ooC 1] [(1) ]Ul)L] X

1
1 0 1+r1( +}u)C 7 1+— JjoL
— 1 1
3

l —+]u)C 1” —

T 3 1J
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jwl T 1
[1+r1( +]0)C>](1+]—)+—1 [1+r1(—+ju)6)]ju)L+r1]
| 3 3 )
joL 1 1 .
l ( +]wC>(1+—>+— <—+]wC>]wL+1 J
2 T3 T3 T2

Methodic instruction

By study of section “Bases of two-ports theory” it’s necessary to
concentrate the base attention on system of two-ports parameters, note
difference between primary and secondary parameters, as their
questions are introductory to characteristically parameters, which are
studied late. Study of characteristically parameters it’s necessary by
explain the such kind of two-ports as filters and long line. Useful to
acquaintance which simple two-ports and methods their connection in
complex two-ports.

Literature [1 - 4], [14 - 16]

Questions for self checking

1. What are the two-ports and how they are classified?

2. Write down the two-port equation in Y-, Z-, A-, B-, H-, G-
parameters.

3. How to determine the parameters of the two-port
experimentally?

4. What are the one-way parameters of the two-ports ?

5. What parameters of the two-ports are called primary, secondary?

6. What are the characteristic parameters of the two-ports?

7. What are the simplest two-ports and how to connect them to
then?
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7. Electric filters

7.1. General information about filters. Definitions and
classification

Electric filters were proposed at the end of the nineteenth century
and since then they have found application in virtually all electrical and
electronic devices.

The theory of filters is represented by classical and modern filter
theory.

The classical theory is based on the application of characteristic
parameters of the four - terminal network,(two-port) that is, it involves
matching the load with the parameters of the filter, which is practically
difficult to perform. Therefore, after calculating the terms of the
agreement, experimentally specify. Classical theory does not provide
optimal results, although it requires minimal time and effort.

The modern theory of filters allows you to calculate optimal filters
with high accuracy. It implies a preliminary approximation of the
frequency characteristics of the filters by rational transmitting functions
and further synthesis of circles for the implementation of these
functions.

Consider the classical theory of filters.

An electric filter is called a two—port, which passes without
attenuation signals with frequencies present in the bandwidth and holds
signals with frequencies outside of this band (in the band of
attenuation).

Cut-off frequencies are frequencies at the boundary of the
bandwidth.

By location of the bandwidth distinguish:

a) a low pass filter (LPF) (Fig. 7.1,a)

It’s bandwidth is 0 < w < w,., where w — the frequency of the
signal, transmitted without damping, w, — cut-off frequency — (limit
frequency of bandwidth).

The dotted line in Fig. 7.1 shows real amplitude-frequency
characteristics (AFC) K (w);

b) a high-pass filter (HPF) (Fig. 7.1; b), it’s bandwidth w = w,;
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c¢) band pass filter (BPF) (Fig. 7.1, ¢); it’s bandwidth w.; < w <

We2;
d) rejection filter (RF) (Fig. 7.1, d); it’s bandwidth w,; = w =
Wc2
K(w) K(®) K(o) K(w)

Fig. 7.1

7.2. General properties of characteristic filters parameters

Classical filter theory considers circuits composed entirely of
reactive elements, that is, without taking into account losses, which
leads to errors, since in real schemes there are always losses in the coils
of inductance, capacitors, connecting conductors. These losses in the
design of filters try to minimize.

If the filter is a four-pole, then the characteristic parameters are
used for its description, in particular the characteristic transmission
coefficient (5.50). Therefore, it can be assumed that the filter is a four-
pole, which has a bandwidth of attenuation o = 0 and in a non-pass
band a # 0. In the ideal filter in the non-pass band o — co.

In the classical theory for the construction of filters use
symmetrical quadruple, which can be depicted in the form of T1-like and
T-like schemes replacement (Fig. 7.2).

[+, I O
4
n 5
2 2
[+, O
a
Fig.7.2
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These schemes are the links on which the filters of the chain (step)
structure are constructed (Fig. 7.3).

1pe 5

T-link IT-link

Fig. 7.3

This construction will be clear if one considers that each of the IT -
like or T-like units can be divided into two I'-like links connected
cascade (Fig. 7.4, 7.5).

4 4 4
L2 . 2 [l - ||k b
2 2 2 2
<O O
4 4 4
Lo 52 2 5 2
2 2
O < O

Fig. 7.5

©
[¢]

BN

[+]
¢}
[+]

As already noted, one-way parameters of symmetric quadrupole
poles

Zy = ! Zy = ! (7.1)
x Yx 3 k — Yk- .
With purely reactive filter elements
Zy = JXx, Zi = jX. (7.2)
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Then the characteristic impedance of the filter by the expression
(5.64)

Ze =\ ZyZy = =Xy (7.3)
That is, the characteristic resistance of the filter is an actual value,
if they have different signs (different in the nature of reactivity) and the
imaginary magnitude, if they have the same signs.
Taking into account the formulas (7.2), the characteristic
transmission coefficient of the filter corresponding to the expression
(5.57) has the form

Z
Zi 1+ [~k
y=_1n1+ Z 1 s

2 Ze 2y [
1=z, 1=
Let's consider individual cases.

Impedances x, and x; have the same signs. Then Z, in formula
(7.3) is imaginary. If so

1+ [k
e2¥ = p2(atjP) = p2a,j2f — d

b

1— [Xk
xx
Than module
1+ |2k
ela — Xx
1— Xk
xx
and
o L =
a =—In|—=]. (7.4)

2 Xk
1— |2k
xx

That is the module of the characteristic transmission coefficient is
real and positive.
Argument
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1 1+ X,
B =-Arg =1[l—, (7.5)
2 1— % 2
xx

wherel =0, +1,+ 2, ...

In the expression (7.5) the value under the sign Arg is purely valid
and depending on the relation between x, and x;, may be positive or
negative. In the first case

B —lAr 2y = rct Ime™) _ 0
=5 ge“r = 2a o gRe(eZV) =

In the second case, that is 8 = %ln = lg, it corresponds to the
expression (7.5).

Thus, under the imaginary Z. have a # 0, that is the same signs x,
and x;, correspond to the band suppression band of a filter.

Impedances x,, and x; have the different signs. Then formula (7.3)
is valid. Also, according to formulas (7.4) and (7.5) we get

X
+ 1 . k
1+ Eik 1 1+) Xy
a==In Xl ==In =0;
1- £ 2 X
Fx 1—j |=£
x J |5
TXxp
1 T el
B=-Arg = arctg |—.
2 1— +x Xl
+xx

Thus, if we really Z, we have o = 0, that is different signs x, and
x;, correspond to the bandwidth of the filter.

Consequently, we can conclude that, the frequencies, at which they
Z. change their true value on the imaginary, and the reactance’s x, oOr
x;, individually change the sign, lie on the boundary of the bandwidth,
that are the cut off frequencies.

The general properties of the characteristic parameters of the filters
are given in Table. 7.1
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Table 7.1

Signs
X Z, Y a B Band
Xk
Xy <0 lx.| 5
= P >0 arctg [ 2
S Real 2 0 k 2, | 2
£ Z.=R & 2
=] § Xx >0 _ t |xk ©
X, <0 arctg lx,|
X | S
- . 53 1+ [3E @
S Imaginary: 5 = 1. Xy ! O
S Z.=jx. SE X _ 25
¢ &g 1- [ [=0,+1,42 2

7.3. Low - pass frequency filters

Let us consider IT- and T-like links in which Z; is inductance and
Y, — capacitance are taken (Fig. 7.6). We define one — sided parameters
Z, and Z,, for these schemes.

<1; Y Y Y <2> 0—"] YYY\__-'YYY\—oz
L Ly Ly
dc 1 q 2 1 2
= = 22 =—C
2 2 2
O O O O
1 2' 1 2!
a b
Fig. 7.6

For the IT - like scheme (Fig. 7.6, a), at idling terminal 2-2' we have
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— | joli +—F¢ 2
—2 i — +
Jo 3 joz) _jwC (J 1 JwCz)
Zxn . 1 4 . -
G, +jwl; + C faC, +jwl,
jo= jo=
(7.6)
2 2—w?lC, ,
=-J = —J]Xxn-

wCy 4 — w?L,C,
When short-circuiting the clamps 2-2' we have for the II-like
scheme

1 .
J'cuCz]wL1 % 2wl
2 . wlq .
m= =g =iy o =M (0)
,—C2+](UL1 jw_Cz-Hle
Jw>"

For a T-like scheme (Fig. 7.6, b), at idling terminal 2-2' we have for
the T-like scheme
L, 1 2 — w?L,C,

Zir = jo— = = —jxer. (7.8
kT ]0)2+ij2 J 200, Jxxr.  (7.8)

When short-circuiting the clamps 2-2' we have for the T-like
scheme

1 . L L, .
L, ]'—wC2]w71 L, 2—61210)262
Zin=jo—4 2852 2 _ 2y 2t
27 1L I T il
joC, 71972

(7.9
Ly 2 . Li4—w0’LC;
_]‘”7(1 = szlCZ) I e, T

As noted earlier, at the cut off frequencies, impedances x, or x;

change their sign. Obviously, at the cut off frequencies, their values pass

through zero, that is the cut off frequencies can be determined from the
relations

Xen =0; x¢n =0; x,7 =0; xr = 0.
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More than the obtained values determines is the cut off frequencies.
From the expressions (7.6) - (7.9) it follows that the cut off frequencies
can be determined from the ratio

XgT = 0,
that is
4—w?lC, =0
where from
2

W o

Determine the characteristic impedance of the LPF. Let's denote
R=.7,Z, =k,
where Z; = Yl and Z, = Yl - impedances, belonging to the I1-like and
1 2

(7.10)

T-like skims of the filter sections. The value R is called the nominal
characteristic impedance of the filter. Filters, for which impedance
R = k = const and valid, are called "k" filters.

For the scheme in Fig.7.6

R={7Z, = |jol——= |2 7.11
= 142 = ]wlja)CZ_ C, (7.11)
From the expressions (7.10) and (7.11) we find L, and C,
2R 2
Li=—:C, = . 7.12
1 we s L2 ch ( )

The characteristic impedance of the LPF is determined by the
formula (7.3). For the I1-like filter scheme, we use the expressions (7.6)
and (7.7)

2 2—w?l,C, 2wl

A = — = =
el = v Xl Xk Jw624—w2L1C22—m2L162

(7.13)
L 4
© €4 — w2L,Cy

For the T-like filter scheme, using expressions (7.8) and (7.9), we
get
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2—w?l G wli 4 — il C;

Zer = "X :j 20C, 2 2—w?l,C,

(7.14)
L4 - 021G,
R 4 '
Let substitute the expression (7.12) in the formulas (7.13) and
(7.14). We have

R W \?2
Zg = ——: Zog=R 1—(—) . (7.15)

We introduce normalize characteristic impedances and frequencies
Z w
ch=§c; Wy = — (7.16)

=
Then we get the expression (7.15)

1
Zenn BN gt Zern =V1—w? (7.17)
You can see that

ZennZern = 1. (7.18)
InFig. 7.7

Zc ] -

-
.
) ZeTn

Impedance

Z
0 ¢ . / Inductance

1 —

Ve Eapa citance '

7~
/ ZC]_[H
! :

/ J
{

Fig. 7.7
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In fig. 7.7 the formulas (7.17) construct graphs for the change of
characteristic impedances Z.q,,, Z.t, from frequency w,. From the
charts it is clear that the characteristic impedances Z,. is very dependent
on the frequency. Therefore it is impossible the load impedance
matching with the characteristic impedance of the filter at all
frequencies. Typically, such matching is achieved at the same frequency
within the bandwidth.

Let’s defined attenuation and phase coefficient of low pass filter. In

the formulas for determining y, a and g in the relation % is present. We

define this relation for the IT- and T-like sections of the filter. For a II-
like scheme, using the expressions (7.6) and (7.7), we get
Xen | 2wl wC4— WPl Gy

Xy  2— w2LC, 2 2— w2l Cp,

(7.19)
4 — w?L,C,
(2 — w2L,Cy)%
For a T-like scheme, using expressions (7.8) and (7.9), we get
xpr  —wLi 4 — w?L,C,  2wC,

XyT 2 2— (IJZLlCZ 2— (UZL]_CZ -

= _(l.)ZLlCZ

(7.20)
4 — w?lL,C,
(2 — w2l G)*
Compare with expressions (7.19) and (7.20), we get that o and 3 in
IT- and T-like sections are defined by the same expressions. Using
formulas (7.12), and go on to normalize values (7.16), we find
xﬂzm=—4“’2(“’2;1)_ (7.21)
XxTl XxT (1 - an)z
At bandwidth of LPF
0<w=<worl<w, <1
At bandwidth of LPF (see Section 7.2) reactance x, and x;, have
different signs (compare expressions 7.6 — 7.9). Then (table. 7.1)
a=0;

= _O)ZLlCz

(7.22)

B = arctg

X

Using expression (7.21), we get
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B = arctg 1= 202 —arctg(l_w% . =
(7.23)
2wy 1
= arctg 5
1-— (,()721 1— Wy
1—w?
Let's denote
wTL
———=tgd=¢
J1—w?
Then from the expression (7.23)
B = arct 20 =arct ﬂzZSzZarct =
81 o2 81 ta26 g
Wy .
= 2 arctg———= =2 arcsin w,.
1— w?
That is, in the bandwidth of the LPF through the normalized values
a=20;
{,8 = 2arcsin wy, . (7.24)

In the band of non-transmission of the LPF
w,Sfw<ooorl <w, <oo.
In the non-propagation band (see Section 7.2), the supports and
have the same signs, as seen from the comparison of expressions (7.6) -

(7.9). Then (Table. 7.1)
a=20;
ﬁ - 2 .
where [ =0,+1,+2, ...
From expression (7.4), using (7.21), we get

2 __
1+ /z—" 1420V e@n 1
X

a=zIn|——==In 20n =1 | _
1 x| 2 1_2wm/w,21—1
Xx 2wz —1
1l (W2 —1) + 2wy w2 — 1+ w?
= —]n =

2

(w2 —1) — 2wy w2 — 1+ w?
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1 (wn + w2 - 1)2

_L Wyt w2 —1
(wn—VoR=1) | lon—Vei-1
(wn+ w,zl—l)

2
=In|w, + (w2 — 1| = 2archw,.
S| e Jei 1] = 2arn,

The phase coefficient B in the non-transmissibility band can be
determined by its value at the boundary of the non-transmissibility band,
that is, at the cut off frequency w,, = 1. Then from the formula (7.24)

B = 2arcsinw, = 2arcsinl = 2% =7 (7.25)

If in the non-transmission band g = l% (Table 7.1), then by the
formula (7.25) [ = 2.

Thus, in the band of rejection band of LPF through the normalized
value

=In

=In

a =2archwy;
{ P (7.26)

In fig. 7.8, the formulas (7.22) and (7.26) construct graphs for
damping change o and the phase coefficient  from the frequency w,,.

The frequency characteristics a(wy,), B(wy,), Z.(w,), which
schown in Fig. 7.7 and 7.8, are called the universes normalized
characteristics of the LPF.

To increase the attenuation a in the of rejection band sections of
LPF are connected in stage. Then accordance with the expression (7.24)
in bandwidth
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{ a, =0;
B, = 2narcsin w,, .
In the rejection band sections of LPF in accordance with the
expression (7.26)
{an = 2narchw,; (7.27)

By = nm.
where n is the number of cascaded connected sections of the LPF.

7.4. Derived filters like “m”

The task of improving the selectivity of the LPF, in particular, the
increase of attenuation in the rejection band section can be resolved on
the basis of modifiable schemes of filters — filters like "m". The
prototype for filters like "m" is a filter of type "k". For reception of a
filter like "m" is necessary in the scheme of the filter of type "k"
successive inductance L, in the II-like scheme to replace by parallel
connection LC circuit and parallel capacitance C, in T-like scheme — by
sequential oscillation LC circuit. The values of inductances and
capacitance are chosen according to Fig. 7.9, where L; and C, are
respectively the inductance and capacitance of a filter of type "k" (see
Figure 7.6).

The coefficient "m" lies within 0 <m < 1. It is seen that for
m = 1, the filter type "m" is converted into a filter of type "k".

For sections of the filter type "m", the cut off frequency w. and
characteristic impedance remain equal to these values Z. in the
prototype (filter of type "k™). In Fig. 7.9 it is seen that the longitudinal
branch in the II-like scheme is a parallel oscillatory circuit, whose
resonant frequency w.. is defined by the expression

1 1 2
Weorp = = =
: 1 —m? Vi-m?[L,C, V1-m?
My~ C2

we. (7.28)

From Fig. 7.9, b it is seen that the transverse branch in the T-like
scheme is a sequential oscillatory circuit C, whose resonant frequency
W 1S determined by the expression
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1 1 2

J1 4_m2L1mC2 Vi-m?,/L;C; V1—m?
m

WeoT = we. (7.29)

At the frequency w. impedance of the transverse branch in the I1-
like scheme tends to oo, that is & — oo. At the frequency w1 impedance
of the transverse branch in the T-like scheme tends to 0, that is
attenuation @ — oo .

mLy
Y
o
I|
e = 1-!',!12
2 T &2
O

Fig. 7.9

From expressions (7.28) and (7.29) it is shown, that wep > wg,
weT > W, ,that at frequencies are more cat off frequency, attenuation
of the filters sharply increase and selectance increase too.

Graphics of change a from w,, are shown in fig. 7.10, where from
one can see that attenuation o in filter type "m" after frequencies
Weo, Weor decries, approximating to the same ending meaning:

1 1+ mp 1 1+ mr
ag =1In ; ar =1In :
n 1-— mp T 1-— mr
o
h11+mT
L-m
h11+mn i
1-mp
0 1 50011 T @,
Fig. 7.10

Consider the characteristic impedance for a filter type "m".
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In order to best match the load with the filter it is necessary that the
characteristic impedance of the filter is as possible invariable within the
bandwidth.

Let's break each of every part of the filter type "m" (see Fig. 7.9)
into a cascade connection of two half — link (Fig. 7.11 and Fig. 7.12).

miLy/2 miy/2
Y Y
¢ [ I ¢
mC Il I mC
|—’ 72:: I-mZC ‘—| + 1—m2C ::Tz
2m 2 2m 2
Zgy Zey
O ] O O
Fig. 7.11

Characteristic impedance Z.; to the left of the Il-like (Fig. 7.11)
and T-like (Fig.7.12) half - links, as the analysis shows, equal to the
characteristic impedance Z,. of the full link

Ze, =Zc

mLy/2 mLy/2

Fig. 7.12
Determine the characteristic impedance Z,., of the half - links to the
right. According to Fig. 7.11

1 . mL,
T 1-m2z_J¥Y72
_ JO C; 1 _
Xtz = 1 “mL, T mG,
1 tjo— Joy
. 1—m?2
JO— C,

(7.30)
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3 2jwly N 2 2(4 — w?L,Cy)
T4 — w21 —mALCy | jomC,  J wmCy[4 — w?(1— mA)L,Cyl

1 . ml,

T 1-m?2_ /Y72
IOy Ca . 2mwl, 231
Xienz = 1 ; +jme1 _]4—(1)2(1 —m?2)L,C, (7.31)
. 1—m 2
JO = G,

Then, using formula (7.3), using expressions (7.30) and (7.31), we

get
Zenz = ~Xxm2Xknz =

B 2(4 — w?L,Cy) 2mwl, B
"~ JomC,[4 — w2(1 —m?)L,C,] 4 — w?2(1 —m?)L,C,

Cy[4— 02(1 —m?)L,G,)?

Taking into account the expressions (7.12) and passing to the
normalized quantities (7.16), we have

\/Ll 4(4 — w21, Cy)

Z = :
cll2n 1 _ (1 _ mZ)wTZL
From expression (7.18)
1 1-1-m?)w]

ch‘[Zn m

In fig. 7.13 and 7.14 dependencies Z ., and Z r,,, from frequency
w, are constructed. It turns out that at m = 0,6 the characteristic
impedance Z., in a large part of the bandwidth does not change. This
allows you to fulfill the condition for the matching of the load with the
parameters of the filter.

Half link filter type "m™ can be used with links of type "k", which
allows to take advantage of both one and second type of filters.

Zeton =
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ZCTzw
1.8 4
1.6 4
1.4
1.2 4
1.0 4
0.8 -
0.6 -
0.4 -
0.2 1

0 0.'2 014 0'.6 0'.8 1'.0 @, 0 ofz 014 0'.6 0'.3 1'.0 W,
Fig. 7.13 Fig. 7.14

7.5. Normalization of frequencies and impedances

Let LPF be given with cat off frequency w,. In general, impedance

of any branch of the filter is defined by the expression
1
Z(jw) =1+ jwlL +ij.

It is necessary to determine the elements of the filter with cutoff
frequency K, w, where K, — the scale factor of frequency.

Increasing the cut-off frequency in K, times corresponds to the
increase of each point of the abscissa of the frequency response of the
filter in K, times when the magnitude of the ordinate and the general
type of frequency characteristic are unchanged. Then the impedance of
any branch of the new filter

L 1
—o =T +jw—+—C. (7.32)
] E K(" ](()K—w
that is inductance and capacity of the filter should decrease in K, times.

Thus, the connection between the parameters of both filters has the
form

w
Z(ja))=r+jK—L+

w

L C
Ty =T Ly =K_m; sza-
Let filter with a cut off frequency ® 3 is given. It is necessary to
define the elements of the filter with the same cut off frequency w., but
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with the impedances in each branch in K, times greater, where K, — the
scale factor of impedance:

1 1
Z.(jw) = K;r + jKcwL + —5— = Ker + joK L + —>
j —C i) —
] K. jw X,
that is the impedance and inductance of the branch should increase in K,
times, and the capacitance decrease in K, times. Thus, the relationship
between the parameters of both filters has the form:
c
r.=Krr;L. =K.L;C. = T
Cc
If in common case filter with cat off frequency ® 3 transform to
filter with cat off frequency K, 3 and with impedances of each branch
in K, times greater, then parameters of such filter are
Cy
rp=Keris Ly = K—:Ll; C=fr (7.33)
where 1y, Ly, Cy, 15, L,, C, - the parameters of the first and second
filters, respectively.
At

P
C_wc_rll

the cut off frequency of the converted filter w., = K. w.; = 1 and the
resistance of itsload 1, = K. 1y = 1.

Such filter is called normalized. First, calculate for the normalized
filter, get the value of the filter parameters, and then, through scale
factors, pass to the actual values of the filter elements.

Example 7.1.
Find the value L, and C, for a single-link normalized (w, =1,
r; = 1) LPF of type "k".
Solution.
Select the load resistance r; equal to the nominal characteristic
resistance R = k:
r; = R =10hm.
Parameters and the filter L; and C, will be determined by the
expressions (7.12):
2R 2-1 2 2
= =

L, === =2~ _ o1 ¢, = e
. 1 © T WR 1
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The diagram of the filter corresponds to Fig.7.6, b, where

Ly
— = 1H: C; = 2F.

Example 7.2.
Calculate the LPF according to the following data.
fo. =5kHz; 1r =1kQ.
Solution.
Parameters of normalized LPF:
Wen =1; 1y = 1.

We find scale coefficients of frequency K, and impedance K:

w, 2m-5-103

K,= — = ——— = 3,14 10%
Wen 1
" _n _1000_103
C Ty 1
In Example 7.1 the parameters of the normalized LPF were found:
Li, = 2H, Cy, = 2F.

Therefore, in this scheme, according to the formulas (7.33) we get

L _Ke, 10 2 = 63.6-1073 H:
7k, ™ T 314010 © T T ’
1

= —Cp =—5—=———"2= 0. -10 ~°F.
G K.K, Con = 105314107 0.0637-10
Circuit of LPF is shown in fig. 7.15 (a — T-like, b — IT-like).

31.8mH 31.8mH 63.6mH
Y ¥ Y o

O Y YT o
—— 0.0637uF ——0.0318uF ——0.0318uF
a b
Fig. 7.15
Example 7.3.
Calculate the LPF according to the following data:

rad

W, = BOOOT, R, = 100 Ohms, Z.(w,) = 0,50 dB.
at the frequency 2w..
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Solution.

The characteristic impedance at the cut off frequency Z.(w.) =0
has T-like link of the filter (Fig. 7.7). Therefore, for the base normalized
link, choose a T-like link for which Z.t, (1) = 0. Determine the
required number of links to provide the required attenuation in the band
non-transmission. From formula (7.27)

a,(2w;) = 2narch2 > .68 Nep,
that is
2 50
G = 2.18.
2arch?2 8.686-1.32
Taken = 3.
We find scale factors. For K. at R = 1 we get
_0_19_ 100 7.34
c=qp=— = 100 (7.34)
ForK, by w, = 1
K, =22 =399 _ 3500 7.35
©=o T 1 : (7.35)

Now we get the filter parameters according to formula (7.33) with
the parameters of the base normalized filter (example 7.2) L,,, = 2H,
CZTL == 2F

L _ K _ 100 2 = 66.6H; 7.36
1= g Lin = 35002 = 666H; (736)
C, = 1 Cy, = 2 = 6.7 uF 7.37
2=k Kk, ™~ 100-3000 M (7.37)
The scheme of the filter is shown in Fig. 7.16
33,3mH 66.6mH 66.6mH 33,3mH
Y Y Y STYTY L YT L
6,7uF —— 6, 7uF —— 6,7uF —— 10092
[+
Fig. 7.16

The examined examples show the high efficiency of the
normalization of the filters.
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7.6 Frequency transformation

Calculated formulas and graphs obtained for LPF can be used to
calculate filters of another type by the method of reception, which is
called transformation or frequency. The essence of this method is that
the imaginary frequency jw in the expressions for the LPF is replaced
by a certain imaginary value T(j2) = jT(f2), which is a function of
another frequency. After such a change, the bandwidth on the
characteristic of the LPF is converted into one or more other
bandwidths, which corresponds to the characteristics of the new filter
type.

Thus, the task is to determine the desired function T(jQ2). The
simplest frequency conversion has already been applied (see section 7.5)
in the expression (7.32) when changing the frequency o to w/K,,.

That is

jo = T() = jT@) = jT(K,w).

In this case, the LPF with the cu off frequency w was transformed
into a low-pass filter with a cutoff frequency 2, = K, w,.

It should be noted that according to Euler's formulas, any frequency
corresponds to two imaginary frequencies jw and —jw on the complex
plane. In terms of mathematics, positive and negative frequencies are
equal. From the physical point of view, both values correspond to the
concept of frequency oscillations.

7.7. High-pass filters

To obtain relations related to high pass filter, we use the method of
frequency transformation. Let
1
jw=T{(NR) =—.
jow =T(j2) i
Then the inductance impedance

L 1 1
]w = .— —_— — T
jQ jﬂ% J2C,

becomes to impedance of the capacity, the value of which
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Capacity impedance
1

= 1 —'!21—'!2L
m—l——J E_] e

—C
j{
becomes to impedance of the inductance, the value of which
1
Le - E

The ratio (7.1) for the LPF bandwidth
0 fw =< w
becomes to relationship
0t
Y00,
or
n=0,. (7.38)

The relation (7.38) corresponds to the high pass filter. For

normalized LPF with w. = 1 we have HPF with
N, = o (7.39)
that is also normalized by high pass filter.

Consequently, for a normalized low-pass filter into high- pass filter
it is necessary to replace the inductance of HPF to capacitance in the
LPF, and the capacitance to inductance:

1 1
Lh - Cl N Ch - Ll .

That is, for example, for an T-like link, the inductance L71 must be

(7.40)

replaced by the capacitance Li and the capacitance C, is replaced by the
1
inductance Ci (Fig. 7.17).
2
Y e Y ° ]
L 7 1)
2 | 2 L L




The cut off frequency . for the high-frequencyfilter is found from
the formula (7.10) for the replacement w. of the LPF to Qi by the

expression (7.39), and L, to % C,to % on the expression (7.40):

1_1 o,
2. [11°° 2VIC
CL

Example 7.4.
Performing a normalized LPF into LPF with a cutoff frequency fc =
5 kHz and resistance load r,= 100 Ohms.
Solution.
Parameters of normalized low-pass filter (example 7.1):
1
ELlnl =1H; Cyp = 2F.
The normalized HPF will have the following parameters (7.40)
1
Lipn ==—==H; Cypp=——=1F.
The scale factors by R =1, w, = 1 for the formulas (7.34) and
(7.35) are equal to:
100 100: K. = w; 2w~ 5000
R 1 7w, 1
Then for the desired filter for the expressions (7.36) and (7.37) we
obtain:

=31,4-103.

L —KCL ! 1—159mH
h Tk, MM T 31,4108 2 '
1

=— Cppp=———————1=10318 F.
Cn =1k, Conn = 100 31,4105 1 = 031K

The diagram of the filter is shown in Fig. 7.18.

0318uF 0.318uF
o o
11 11

1.59mH

Fig. 7.18
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Example 7.5.
Convert the "m" type LPF (see Fig. 7.9, b) into the "m" type high-fi
filter.
Parameters of elements in longitudinal branches of the high-
frequency electric field are obtained by the formulas (7.40):
1 1
VLT L iy
2

By the formula (7.40) we find the parameters of the transverse
branch:

Lol 1 4m
l_ch_1—m2L T (A-mdL,
4m 1

The diagram of the filter is shown in Fig. 7.19.

2/mL] 2/mL1

4m
(1-m 2)Ll
m C

Fig. 7.19

7.8. Band pass filter

Let the transformation equation for band pass filter have the next
form by the transformation frequency method
N: —n?
jon
where (2, — the geometric mean of the cut off frequence Q., and Q, of
bandpass filter (BPF), and IT — is the bandwidth of the BPF.

-QO =4/ chﬂcz; (7-42)

=0, — 0. (7.43)

Let the output LPF have a normalized cut off frequency w, = 1.

Two imaginary frequencies correspond to the complex plane of this
frequency

jo =T(@j2) =

(7.41)

then

jo=joc=j1=]; jo=-jo.=—j1=—.(7.44)
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Then, substituting the formulas (7.44) in (7.41), we obtain (at
jw =J)
0504
] =50
]-chn
or
N3 —M0, —03=0.

I1 I12 )
(-Qc1)1,2 = E T T + Qo-

Interest have only positive frequency. Therefore

Hence

HZ
ch = E + T + Qg
At
. . 05 -0%
Jo=-j,  —J=—
JQe 11
or
0%, +Q,, — Q3 = 0.
Hence

noom
(-ch)1,2=—§i T"‘-Qo-

Positive frequency ., are defined are defined by expression

I1 12 )
.ch = —E + T + 'QO'
Now, using the transform (7.41), the complex impedance of the

inductance

,L_ng—nz gL 0°L 1 +,QL_ oL
JOR=Tan C T jon jon L, I 0P T ac, Te
Jj2 =3
021
where
L=t =2 (7.45)
e_l—[a e_ﬂgL- .
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That is, the inductance L is converted into a serial connection of
equivalent inductance L, and equivalent capacitance C,.
For complex conductance of capacity C we have

iwC = O_QZC—Q(Z’C re_ 1 r0t= +j0C
JOY = Than " Tien jen T o, 0T jar, T e
nic
where
C. _& Le= n (7.46)
e_l—[a e_QgC' .

That is, the capacitance C is converted into a parallel connection of
inductance L. and capacitance C.. Thus, the inductance L is converted
into a series oscillatory circuit, the capacitance C — in the parallel
oscillatory circuit.

Resonance frequency of the both circuits

1 1 1
Q, = = = =0y (747

Vife L onm o |n ¢
I 02l [03c 1
For example, for a T-like link of the low-pass filter we obtain the
corresponding values of the band pass filter SF branches parameters
(Fig. 7.20, a, b) by the formulas (7.45) and (7.46):
_b_ Ly W 2m
WU T anm M T 02L,, T 02,
I I Cy G,
M=0ze,, 03¢, T mo I

L L
71 71 Crer™ Q L] Crer™ Q ]_]
_L _L
Licr=511 l(‘F M
C
T Lyer= Q c, CZCF
5 !
Fig. 7.20

Example 7.6.
Transform the normalized T-like LPF (Example 7.1) with the

parameters Llnlpf 1H, Cynipy = 2F in the SF with r, =75 Ohm,
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the bandwidth IT = 8- 10 3rad/s and the resonant frequency 2, = 1.5 -
10° rad/s.

Let’s find the parameters of the normalized SF by the formulas
(7.45) and (7.46):

— Lll — — .
Lincr = T 8.105° 0,125 mH;
Coep == 81 s
mef T 02L, T (15-109)2-1 i
Lyor = _ 8710 018 uF.
2 = 2C,  (15-100)2-2 oM
CZan = F = m = 250 pF
Scale factor K. by R = 1 with formula (7.34) is
n 75

Then for the wanted SF
Lics = KcLynes = 75+0,125-107% = 9,375 mH;

1 1 -12
Locs = KcLancs = 75+ 0,0018 - 1076 = 0,135 pH;

1 1
Cacr = ¢ Coney = 75250 10712 = 3,33 pF.

7.9.Rejection filter RF

Let’s by the transformation method have the form of the
transformation equation is
jw=T(N) = /o1
o= “Z-qo2
where 0, is determined by the formula (7.42), IT — pass band of
rejection filter (RF), is determined by the formula (7.43).
Analogically with the band pass filter, we solve the equation
j = Sl
05— 04

(7.48)

or
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From here

I1 I12 2
(-Qc1)1,2 = _E + T + Qo-

For positive frequencies

noom
.(261:—5 T‘FQO

Let's solve the equation

_j = el
05 - 0
or
.ch H.ch - ‘QO - 0
Hence
I1 2 )
0 =—+ [—+0
( C2)1,2 2= 4 + 0

For positive frequencies

no|m
QCl:E-I_ T‘l‘ﬂo

That is in comparison with the band pass filter BPF, the boundary

frequencies changed places.
Now, using the transformation (7.48), we obtain the complex
conductivity of the inductor:
1 05-0° 05 0
jwL — JONL — jOIL jOIL

(7.49)
1 +jn ! _ +j0cC
inlL JUnL T jar, e
0§
where
o 1 ML
cTnL Tt 0F
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That is, inductance L is converted into a parallel connection of
inductance L. and capacitance C,.
For complex resistance of capacity
1 05-02* 0§ 0
jwC — jQIC ~— jOIC jOIC

(7.50)

— — +j0—= +j0L,,
10 T TUTe T jac, T
] [22

0

where
L 1 c _qc
cTnc C 0%’

that is, the capacitance C is converted into a series connection and
iinductance L, and capacitance C,.

Thus, the inductance is converted into a parallel oscillatory circuit,
and the capacitance C is a series oscillatory circuit. The resonance
frequency of both circuits coincides with the result (7.47) for the band
filter BPF.

For example, for a T-like link of a low — pass filter, we obtain the
corresponding values of the parameters of the branches of the rejection
filter RF (Fig. 7.21) by the formulas (7.49) and (7.50):

1 2 ML, 1L,

Licg == Cicf =7 = 53>
ML, 1Ly, 2 20
11 ¢y TC,

Lycr = = ——: Cpof = —o = —o0,
Lz‘ff Mc, 0¢,° >~ 02— 2

T%

In table. 7.2 the correspondence between the elements of the LPF,
HF, SF, and ZF, obtained by the method of frequency transformation, is
indicated.
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Table 7.2

LBF HBF BF RF

=
—
b~

e

E |h
To
O[.::J
EI|_
hE

m

0
St
!

=

()

7.10. Elements of filters synthesis

Stages of filters synthesis for LPF. Under the modern theory of
filters, which involves the approximation of the frequency
characteristics by the most suitable rational functions, it is possible to
isolate the following steps to the synthesis of the thesis for the LPF.

1. The technical requirements for FFL LPF are formulated. The
ideal frequency response at the cut off frequency is shown in Fig. 7.22

and is written as follows:

K,(®)
1 0<w<w,,
1 _ ) —_ —_ Cr
Kp(w) = {O, w = W,
Here K,(w) is the ratio of power
(0N @ transmission.
Fig.7.22

In this case no requirements for phase-frequency characteristics
(FHC) is not put. That is such a synthesis is a synthesis for a given AFC.

It is clear that the idealized frequency response for fig. 7.22
physically can not be realized and therefore the synthesis continues.

2. The idealized AFC for Fig. 7.22 is approximated by such a
function, which follows it will be possible to realize in the physical
circuit.

3. For the approximated frequency response, find the transfer
function K (p) — the dependence of the transmission coefficient on the
operator p = ¢ + jw on the complex plane. In comparison with the
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complex function of the circuit K(jw) as an argument is not the
imaginary frequency jw, but the complex operator p =0 + jw, ie
simply imaginary frequency jw, is replaced by the operator p.

4. Find the coordinates of the zeros and poles of the transfer
function K (p) and build the principle filter scheme for them.

Approximation by the Butterworth filter. The amplitude - frequency
response for fig, 7.22 can be approximated by a filter with a maximum
flat characteristic — a Butterworth filter. For him, the transmission factor

of power

1
Ky (wn) = Tom

where w,, = wﬂ — normalized frequency, n- the order of the filter.

In fig. 7.23 shows AFC of Butterworth filter is shown atn = 1 and
n=>5. It is clear, that n is more, the more precisely the AFC is
approximated for fig.7.22.

At the cut off frequency
(w, = 1), the transmission ratio of Kp(mn)
power K, =0,5.To estimate the
signal attenuation, take a decimal
logarithm from, i.e.

a(w) = 101gK,(w,) = 101g0.5 =
—3.01dB.

This value don’t depends on the 0 0510152025 O

order of filter.

(7.51)

n

Fig.7.23
In the bandwidth of the LPF, when w,, > 1, we obtain from the
formula (7.51)
Kp(wy) = wy®™.
Attenuation
a(w) = 10 IgK,(w,) = —20n g w,dB.
The rate of attenuation in the band of non-transmission is
a(w) = -20nlg2 = —6n dB :
octave
That is, the increase in frequency twice gives an attenuation of

6 dB/octave. Octave is an interval of frequencies, the boundaries of
which differ two time.
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Determine the transfer function of the Butterworth filter.
Replace in the formula (7.51) w, with jw,. If the transmission
factor of power is
Ky (wp) = K(jwy) - K(—jwy),
2

where K(jw,,) = Z— - the voltage transfer coefficient of two-pole, then
1

the transfer function of the power K, (w,) is a even and real number,
that is, it does not take into account the phase proportions when the
signal passes through the four-pole. Then, by the expression (7.51)
1 1
U = G0 = T4 DM @™

Now propagate the action of function K, (jw,) from the imaginary
axis to the entire plane of complex frequencies. For this, replace jw,
with p, = 0 + jw,. Get it

K = —
P = T
Characteristic equation
1+ (D)2 =0 (7.52)

gives 2n poles on compex plane.
Now transfer function for Butterworth filter is written as

1
K(pn) = :
" (pn - pnl)(pn - Pnz) (pn - ann)
Atn=1

(7.53)

1+ (-1D%p2=0,1-p2=0,p2=1.
Hence the roots
) pnl =1, ppp= __1-
In fig. 7.24,a the location of these roots in the complex plane are
shown.




Atn=2
1+(-D?*pp=0, pp=-1
Hence the roots

Ph =T = %) = +el2; p, =+ [te’>;

Pn1 = +y+e2 = e’s;

.TT

Pn2 = + —eJE =+ —ej(z

Ju Ju j(E+TL’) ]5_”

Pnz = —{/€2 =—€4+=¢ \4 =e 4,
b 31 (3T 7T
Pna = _'\,_6]5 =—el% = eJ(THT) =el%,

In fig. 7.24,b the location of these roots in the complex plane is
shown.
Atn =3
1+(-DPpy=1-p3=0, py=-1
Hence the roots
pi=VI pi=1, pi=—-1=j2=e% =eim,
Pn1 =1

3’ T i T
Pnz = i/—_z 3\/]_= 61252 3\/e]7'[ = ej3;

3 LT 2T
Pn3z = i/I = 3;/]_4' = ’3145 = 3\/ej277: = ejz?;
Pna = V-1= -1

3/ o™ : 4
pn5:w=3/j = e]85=3ve14.7-[=e]3;

3 3 10" 3 — 5T
p?’l6= \/— = 3,Ij1 = e] E: \/e]ST’-:e]?_

In fig. 7.24,c the location of these roots in the complex plane is

shown.
From Fig. 7.24, it is clear, that all poles are located at identical

angles to each other, equal % If n —n odd, then p,; = 1, if n — twin,

then p,; = e’n.
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From Fig. 7.24 it is seen, that the picture of the location of the poles
has guadrant symmetry, that is, with respect to the vertical axis, passing
through the center, the picture is symmetric. Therefore, for the synthesis
of a circuit, only those poles, located in the left on half-plane are taken
(the roots of the characteristic equation, corresponding to these poles,
have a negative real part,it is corresponding to the attenuation of
processes and the presence in the implemented circle, of the active
resistance). Mirror the image in the right half-plane is not taken into
account (Fig. 7.24).

Approximation by the Chebyshev filter. Amplitude-frequency
characteristic in Fig. 7.22 can be approximated with Chebyshev
approximation — a Chebyshev filter.To do this, the transmission ratio is

power
1

Kp (O)n) = m, (754)
where € < 1 — the coefficient of non-uniformity of the characteristic in
the bandwidth; T2 (w,,) — Chebyshev’s polynomial of the n-order, which
is determined by the formula

T, (x) = cos(narccos x). (7.55)
This polynomial has an important property: be —1 < x < 1
value of T,(x) is the list deviates (comparatively with other
polynomials) from zero.
At |x| » 1 values T, (x) increase sharply. That is, the frequency
characteristic for fig. 7.22 with a crestal peak (Fig. 7.25) is realized.
The function T,,(x) is determined from the recurrence ratio

Tp(x) = 2xTy 1 (x) — T2 (x) (7.56)
forn=0 To(x) =cos0 =1,
forn=1 T, (x) = cos(arccosx) = x.

This follows from the expression (7.53).

T

BTV
AR

Fig.7.25
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Let n = 0, then by the formula (7.54)
1
Kolon) =177
Let n = 1, then by the formula (7.54)
1
olon) =1 70r
In the bandwidth 0 < w, <1, that is, K,(w,) in the bandwidth

range of LPF varies from 1 to — .
1+

Let it be n = 2, then by the formula (7.56)
T, (x) = 2xT; (x) — Ty (x) = 2x% — 1.
Then according the formula (7.54) we get

K = = .
p(on) =77 2T (wy) 1+ e2(2w2 — 1)2
Let it be n = 3, then by the formula (7.56)
T3 (x) = 2xT,(x) — Ty (x) = 2x(2x? = 1) —x =
= 4x3 — 2x — x = 4x3 — 3x.
Now, by the formula (7.54)
1 1
K,(w,) = = .
p(@n) 14 &2T2(wy) 14 2(4wd — 3wy,)?
V cmysi npornyckanns Ky, (wy,,) 3MiHIO€ThCA y Mexkax Bij 1 10

etc.

That is, in the general case in the bandwidth the value K, (w,)

ranges from 1 to 137 if w, > 1, that is, outside the bandwidth, the

value K, (w,) alls sharply.

Fig. 7.26 shows characteristic graphics of the frequency
characteristics of the transmission coefficient for the Chebyshev filter at
n=2andn = 3.
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It is seen that the magnitude of the ripples in the bandwidth
depends on ¢ (increases with growth ¢). To obtain the desired frequency
characteristic, select a pair of parameters ¢ and n.

Determine the transfer function of the Chebyshev filter. Replace in
the formula (7.54) w, on p, = 0 + jw,.

K = —
PPn) = TG
It’s characteristic equation
1+ £2T2(p,) = 0. (7.57)

The solution of the equation (7.57) is quite complex. The procedure
for determining the roots of the equation (7.57) is as follows:
1) calculate the auxiliary parameter

1 1 1 1 1
a=—arch—=—In| —+ —+1];
n e n e £

2) find the poles of the Butterworth filter in the same order,

3) abscissa each pole Chebyshev filter is found by multiplying the
corresponding sha into Butterworth filter abscissa, ordinate each pole
Chebyshev filter — as a product of the same cha into ordinate
corresponding to each pole filter Botteworth,

4) using the coordinates pole Chebyshev filter, record Chebyshev
filter transfer function similar ratio (7.53).

Implementation of filters. Consider the realization of the LPF. The
order of the LPF is determined by the number of poles of the transfer
function of the filter.

Consider the first-order filter. It is implemented in the first-order
circuit in the form of a RC-four-pole (Fig. 7.27). For him

1
Uout (P) p_C 1
K(p) =22 = = : 7.58
V=T g L 1+prc Y
pC
— 14—
R
IDm C:: D‘;JH!
[+ O
Fig. 7.27



Characteristic equation

1+ pRC = 0.

Its root
_ 1_ 1
pl_ RC_ T’

where 7 = RC — is the time of the filter.

If specified T = RC, you can arbitrarily set R or C.

Consider the second-order filter. It is implemented by the second
order circuit in the form of a I'-similar two-port (Fig.7.28).

For him

Upe®@)  R¥tpC  TFpRC
Un(®) R _R
n R C pL +

K(p) =

_ T+pRC R 3
" pL+p?LCR+R ~ pL+p2LCR+R "~
1+ pRC

(7.59)
_ R 1 1 1
~“ICR 1 1~ LC 1 1
P’+gePtic P’+eePtic

2

Wo

- p? + 2ap + wj’
where
1 1

(J)O=\/R,(l=ﬁ.

D;” C T R Uros(r

Fig. 7.28
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Characteristic equation
p? + 2ap + w3 = 0.

Pz = —a % jwf — a?.
These roots can be both real and complex-conjugated.
In the general case, the filter of any order is formed by a cascade
connection of separate filters of the first and second order with the
elements of the decoupling between the links (fig. 7.29).

Its roots

Ik, —+ K, I Ky l—

Decoupling elements

Fig. 7.29

In Fig. 7.29 K4, K, ..., Ky — the coefficients of the transfer of links
of the first and second order.
As a result, the transmission coefficient of the filter for rice. 6.29

K(p) = K1(p) - K2(p) - ...- Kn(p).

Example 6.7.
It is necessary to realize the LPF with the maximum flat
characteristic (Butterworth filter) of the third order with the cu toff

frequency w, = 10° % . The load of the filter is resistor R = 0,5 kOhm.

Solution.

Acc ¢ ording to the stages of synthesis: the requirements for the
AFC of the LPF are stated in the task. Approximation of the AFC of the
LPF on the condition of the Butterworth filter task. We record the
transfer function of the third order filter. In general, it is recorded as

follows
1

K(pn) = :
] " _(pn - pnl)(pn - Pnz) (pn - ann) )
Define the coordinates of the poles of the transfer function. From

Fig. 7.24,c for n = 3 it is evident that they are e poles 3.4.5, located in
the left half-plane, that is,
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Pn3 =¢€ 3, Pna=—1, pps=¢€"3.
We renumber poles in order:

Pni = cos%ﬂ +jsin2?n = —0,5+0,866;
Pn2 = cos%ﬂ +jsin4?n = —0,5—0,866;

Pnz = —1.

Previously, a replacement was made jw on p and jw,, = p,.
w jw . 14

If w, =w—c,thenw—c=]wn =0 = Pn:

From here

D =Dn* W

Turning now from the normalized variable p, to a real complex
frequency, we get

P12 = Pn1 " ¢ = 10° - (=0,5 + j0,866), p3 = pp3 - w, = —10°.

According to Fig. 7.29, the scheme of the third order filter can be
constructed in the form of a cascade connection of the first order link
with the pole p; and the second order links with the poles p, , and the
male solvers (Fig. 7.30).

First Second
Tnput — order link > order link [ Output

Decoupling advice

Fig.6.30

As a link of the first order choose a link according to the scheme in
Fig. 7.27 than transfer coefficient by equation (7.58)

K(p) =

b

1+pt
where T = RC.
Frequency response is replaced p by jw:

K(jw) = K(w)el?@ = !

1+ jwt

Here
1

J1+ (wr)z.
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At the cutoff frequency, the transmittance module in voltage

decreases by 1/+/2 times. That is with w = w,
1

1
V1+ (wr)? V2

hence
1+ (w1)? :2;wC=%;T=RC=wi.
Choose arbitrarily C = 10 nF. Then
w
R=-2 = 1000 Q=1 kQ.

T C T 10510109 _ _

For a link of the second order, choose a link according to the
scheme in Fig. 6.28. the role of the resistor R performs in this case the
load impedance R,,. Transfer coefficient according to the formula (7.59)

w§ w§

K(p) = = .
p?+2ap+w; (@ —p)@—Dp2)
If
Piz=—atj /wg —a?=10%-(-0,5 %+ j0,866),
then
= =0,5-10°
“ZRcCc " ’
hence
1 1
c = 0,02pF.

2R, 05-105 2-0,5-103-0,5-10°
Now, taking the resonant frequency of the series oscillatory circuit

in the diagram of fig.7.28

1

Wy = — = W,
0 \/R c
get it
L= L ! =5-10"3=5mH
T i€ (105%-0,02-10°6 - > m
The schematic diagram of the synthesized LPF is shown in fig.
7.31.
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1kQ) SmH

o—: Y Y ey
10nF == N 0,02 mkF == R=5Q
Fig. 6.31

As a soldering device, emitter or loop repeaters are usually used.

Example 6.8.

It is necessary to implement the Chebyshev second-order low-pass
filter with a cut-off frequency w, = 10° 1/s with a load R, = 1kQ an
irregularity coefficient e = 1.

Solution.

According to the synthesis stages, the requirements for the
amplitude-frequency characteristic (AFC) of the LPF under the
conditions of the problem are carried out by a Chebyshev filter. We
write the transfer function of the Chebyshev filter of the second order
with the parameter € = 1. In the general form

1
K(py) = :
. . (PH - pﬁl)(pﬂ - pHZ) .
Determine the coordinates of the poles of the transfer function. We

calculate the auxiliary factor

S e R ) 2 ity 2 a1 = 04407
a=amM T 2 21T 12 = DAL

We calculate the poles of the second-order Butterworth LPFs. From
Fig. 7.24,6 it is evident that they have poles 2, 3 (in the left half plane),
that is,

Jrw Jrus
_pn2=e4;pn3=e4'
Number the poles in order

3 3m .

Pn1 = COST +}SlnT = -0,707 +j0,707;
5mn  5m )

Pn2 = cosT +]SIHT = —0,707 —j0,707.

Now define the abscissa (bonus of the abscissa of the Battewortht
filter on the sh a and ordinate - on the ch a). From the tables we have:
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0,4407 _ ,—0,4407
sha =sh0,4407 = > = 0,4551;
0,4407 4 ,=0,4407
cha =ch0,4407 = > = 1,0987.

Now the abscissas of the poles of the Chebyshev filter

Re[pn12] = Re[pni2] -sha = (—0,707) - 0,4551 = —0,322;

Ordinates of the poles of Chebyshev's filter

Im[py12] = Im[pny,] - cha = (£/0,707) - 1,0987 = +;0,777.

As a result, the poles of the Chebyshev filter of the second order at

€ = 1 are gaining shape
Pp12 = —0,322 £ j0,777.

We move from the normalized variable p, to the real complex

frequency
Dlz = Pniz " Wc = 10°-(=0,322 0,777).

For the link of the second order we select the filter according to the
scheme of fig. 7.28. The load is resistance R;, The coefficient of
transmission of the filter by the formula (7.59) is

w3 w3

K(p) = = :
P p?+2ap+wf (@-p)@—p2)
If
P12 =—atj /wg —a? =10%-(=0,322 +0,777),
then
— — . 105
a_ZRHC 0,322 -105,
where from
1 1

C

T 2R,-0,322-105 2-1000-0,322-105 _
=15,53-107° = 15,53nF.
Equate the imaginary parts of the poles

/wg —a%=0,777-10°.

From here
w3 — a? =0,6037 - 101,

w? = 0,6037-101° + a2 =
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=0,6037-10%° + (0,322-10°)? = 0,7073 - 101°
If
1

Wy = —,
" VIC
1 1

L = =
wiC 0,7073-101°-1553-107°
The schematic diagram of the synthesized LPF is shown in fig. 7.32

then
=9,1-10"3 =9,1mH.

9, 1mH
o YT ™Y o
U7, 15,53mkF=—= Lk 1kQ
L[+5 O
Fig. 6.32

Methodical instructions

When studying the theory of filters it is necessary to use
information about the characteristic parameters of the four-pole. To
study the material of the section "Electric filters" is necessary on the
example of the LPF. By the method of frequency transformation,
expressions can be obtained for the remaining types of filters: the upper
frequencies, the band and the barriers. You must understand the
difference between "k" and"m" filters, as well as the benefits of "m"
filters over "k" filters.

Synthesis of filters is carried out according to modern theory. Use
approximation for Butterworth and Chebyshev. The approximation is
given only by the amplitude-frequency characteristics. Filters are
implemented on the basis of RLC-circuit of the first and second order.

Literatura: [1 - 4]

Questions for self-examination

1. How do I distinguish filters by bandwidth location?
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2. What are your relations for the coefficient of attenuation and the
phase coefficient in the bandwidth and non-transmissibility for LPF?

3. How do filters like "m" get from filters like "k"?

4. What is the content of the operation of the normalization of
resistance and frequency?

5. With what correlations for frequency it is possible to transform
the LPF into high-frequency, SF, and ZF?

6. Output the stages of the LPF synthesis.

7. What are the approximations of the frequency characteristics of
the LPF to you?

8. What is the content of the Butterworth filter approximation and
the Chebyshev filter?

9. Describe the implementation of synthesized filters.
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8. Circles with distributed parameters

8.1. Definition and equation of a long line

Circuits with distributed parameters (DPC) are idealized electric
circuits, whose geometric dimensions exceed the wave length of
transmitting electromagnetic oscillations. They differ from circles with
lumped parameters so that the values of currents and voltage within the
boundaries of the selected sections of the DPC do not remain
unchanged, but change at the same time point from the intersection to
the intersection.

Depending on the number of coordinate along which the current
and voltage vary, one-dimensional, two-dimensional and three-
dimensional DPC are distinguished. We will consider one-dimensional
DPC, which are called long lines (LL), for example: communication
lines, power lines.

A long line can be represented in the form of a set of continuously
connected infinitesimal elements of length dx, each of which has its
resistance R,dx, inductance L;dx, conductance G,dx and capacitance
C,;dx (fig.7.1). Resistance R;, inductance L,, conductance Gy,
capacitance C; are the chassis parameters of LL per unit length. 1

If, on all sections LL R; = constant, L, = constant, G; =
constant, C; = constant ie do not depend on coordinates, then LL is
homogeneous or regular.

If Ry =0, G; = 0 that is, LL consists only of inductance L; and
capacitance Cy, then it is called a loss free line (for example, power lines
are modeled LL without losses).

If L; =0, G, = 0, then the resulting line R, C; is used to simulate
passive elements (film and diffusion resistors, capacitors, connecting
conductors) of integrated microcircuits.

Parameters Ry, Ly, Gy, C;are called primary parameters LL.

Consider the equation of LL. Let x - the distance from the
beginning of the LL to the element dx, i, u — instantaneous values of
current and voltage at the beginning of the element dx

The rate of change of current and voltage along the length of the

line, obviously, can be written in the form — and — . Then the current
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and voltage at the end of the element will be equal respectively i +
di ou
adx, u+ adx.

We will write for the node A (Fig. 8.1) the Kirchoff equation for

currents, and for the loop, indicated by an arrow, the Kirchoff equation
for voltage.
o di p 8ud 4 C,d d aud
<l+6x x) (u+6x x)Glx x6x<u+6x x)—
ai du
—u+ Ridxi + Lidx—+u+—dx =0,

ot 0x
or
—('+aid)+( +aud)Gd +Cid a< +aud)-
—laxx uaxx 1x 1xatuaxx,
0% 0 = Rudci 4 Lodx
(u ax x)— 1 X1l 1 xat

Fig. 8.1

Expanding the brackets, shortening on dx and neglecting the terms
with (dx)? as infinitesimal second order, we get

( U e = Rycxi + Ly dx
u—u axx_lxl 1x6t’
A ) du du Jd du
Ll=l+adx+u61dx+a deldx+Cldxa +Cldxata dx.
Finally
Ju Ri+L ai
ox TG ®.1)
adi G +Cau ’
ox TG

Equations (8.1) are called differential equations of LL or
telegraphic equations.
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8.2 Long line with harmonious influence

We write the equation (8.1) in the operator form, moving from time
t to the operator p:

dl(x,p)
T e (Gy +pCy) U(x,p) — Cyu(x, 0);
du(x,p) ,
T (Ry +pLy) 1(x,p) — Lyi(x,0).
At zero initial conditions u(x,0) = 0, i(x,0) = 0
dl(x,p)
- =Y (p) U(x,p);
dx (8.2)
du(x,p) — 2.(0) I(x.p) '
dx - 1 p x’p )

where
Y1(p) = Gy + pCy, Z1(p) = Ry + pLy.
We differentiate the left and right sides of the second equation
(8.2). We'll get it
dix,p) 1 d*U(x,p)
dx — Zy(p) dx?
We substitute in the first equation (8.2)

2
% =Z;(0)Y1(p) U(x,p) = y*(p) U(x,p),
or ,
% —y*() U(x,p) = 0, (8.3)
where y(p) - is the operator coefficient of propagation.
It is equal
Y(®) = Z1(0)Y1(p) = Y (Ry + pL1)(G; + pCy). (8.4)

The general solution of equation (8.3), as an equation without the
right-hand side, has the form

U(x,p) = Ay (p)e V¥ + Ay (p)e? ™, (8.5)

where A;(p), A, (p) — the constants of integration (determined from the
initial conditions at x = 0 (beginning of LL) and x = 1 (end of LL); | —
the length LL; —y(p), y(p) — the roots of the characteristic equation
p? + y2(p) = 0, compiled for equation (8.3).
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We differentiate the expression (8.5) by x and substitute it in the
second equation (8.2)

—A;(P)e YP*[—y(p)] — A, (p)e" Py (p) = Z,(p) I (x, ).

From here
A @)Y PE A, (p)er >
I(x,p) = - =
Z,(p) Z,(p)
Y(p) v(p)
(8.6)
_ A @eYPF  A,(per P*
- Zy®) Zy(p)
where Z,,, - the wave impedance.
It is equal
7 = Zy(p) _ Zy(p) _ Zy(p) _ Ry + pL4 8.7)
Yooy®  JZ,o)v(p) Jh@  (GitpC T

The system of equations (8.5) and (8.7) gives the value of operator
voltages and currents of LL, depending on the coordinate x.
U(x) = A1e ™7 + Aye?™ = Upgy(x) + Upey (x);
. A A, .
I(x) =——e™" = —=e"* = Iy (x) + Lep ().
Zy Zy
For the analysis of processes in LL under harmonic influence, we
rewrite the equations (8.5) and (8.6) in the complex form, replacing p

with jw:
. - ’R1 +jwl,
y = \/(R1 +jwl) (G + jwCy), Zy, = —61 Tt 8.9

where y; - the coefficient of propagation, Z,, — the wave impedance.

(8.8)

It is equal to:
Yy =a+jB; (8.10)
Zy = Z,el?; (8.11)
A = AjelVi; Ay = AyelVa. (8.12)

We substitute the expressions (8.10) - (8.12) in equation (8.8)
U(x) = AyelVie@tiB)x o 4, elvzelatib)x.
AjelVie=(@tiB)x A, olvyela+iB)x

Z,,e¢ Z,,eJ®

I(x) =
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or through instantaneous values in the real form
([ u(x,t) = V24,e~% cos(wt — Bx + ¢;) +
+V2A4,e% cos(wt — Bx + @3) ;

{ V2A,e%
i(x,t) = Zl—cos(wt —Bx+y, - (p) +
w
V2A,e%*
+—2—cos(wt + Bx + v, —¢).
L Z,,

You can also write
u(x' t) = ufol (x' t) + uref(x' t),
((x,t) = i1 (%, 1) — lres(x, 1),
where

{ufol(x, t) = V24,67 cos(wt — Bx + ) (6.13)

Uper(x, 1) = V24,6 cos(wt + Bx — ,/,2);
{lfol(x t) = \/—Al‘j = cos(wt —Px+y, — cp);
WAZ

lref(x,t) = cos(a)t +Bx+ y, — @)= (814)

\/_Aze

cos(a)t +Bx+y,—p+m),

Where wsop, ifor, Uress lref falling and reflected waves of voltage and
current.

Physical content of voltage and current waives is as follows. Let's
consider, the incident and reflected waves of the voltage. In the incident
wave (fig. 8.2,a), with increasing of x, one and the same voltage phase
occurs at a greater value of t, that is, later. If you take it the starting
point is the beginning of the line, then the maximum value of the wave
over time shifted from the beginning of the line to its end: the wave of
voltage as if moving from the beginning of the line. In the reflected
wave (fig. 8.2, b), with increasing of x, one and the same voltage phase
occurs at a lower value of t, that is, before: the voltage wave moves
from the end of the line to its beginning, returns. The amplitudes of the
incident and reflected waves are reduced by exponentially in the
direction of distribution (Fig. 8.2).
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Hrqf(xa f)

\/Ef’\l\]e ox

Fig.8.2

The value a = Re[y] is called the attenuation constant. Attenuation
is caused by energy loss in R4, G;.

The value f = Im[y] is called the phase coefficient and shows the
phase change per unit length.

For a lossless line (R; = 0, G; = 0)

a=0;y =jwLC;; B = wL,C;. (8.15)

The distance between two points of the wave, the phases of which
are different, is called the wave length. The wave length is found from
the ratio

(wt — px + 1//1) - [a)t —Bx+ 1)+ 1//1] = 2m.
From here

2
A= R (8.16)
For the lossless line, taking into account the expressions (8.15), we
have
2 1

A= = .
wLiC  ffL1Cy
The velocity of moving along the line of the point with the same

phase is called the phase velocity v, = %.

Speed is determined by the ratio
(a)t — fBx + 1//1) = const

(8.17)
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or

d
%(wt_ﬁ” l//1):0'
that is

dx dx w
w=p=0; Vpnfol = gy =

In accordance
w

Uphref = — ﬁ

For the lossless line taking into account the expressions (8.15) we

get
Uph = Uph.fol = |Uph.ref| = \/ﬁ (8.18)

The phase velocity in the DL is close to the speed of light.
Obviously, from the expressions (8.16), (8.17), (8.18)
_ 2mUpp  Upp
== ~

Wavelength impedance Z,, and propagation coefficient are called
wave or secondary parameters of LL.

8.3. Reflection coefficient

The ratio of the voltage or currents of the reflected and incident
waves in an arbitrary intersection of DL is called the reflection
coefficient:

Urer @) _ Aye™ Ay o0

Uri(x)  Aje™7* Ay
iref(x) _ AzeyxZw _ AZ
ifol(x)_ A.le_j’xZW_ Al

Py (x) =

b

e?x. (8.19)

pi(x) =
That is
pu() = —py(x) = p(x).
Let define integration constants A;, A,. Let’s put in equation (8.8)
that x = 0. We’ll get it
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U(0) = Uy = Ay + Ay;
A, A 8.20
i) =hL=->+-22, (820
Zy Zy
where Uj, I; — voltage and current at the beginning of the line.
So,

. U +hLz, . U -§LZz
Alz%;Azlelw_ (8.21)
According to the expression (8 19)
50 = pu) = I e v (g
“ U, + 1,2, '
where p, — reflection coefficient at the beginning of the line
Uy
U, —1I Zy 1' w717
Py = ! 1 =i W (8.23)
U, + 1,2, U1+Z  Zy + 27,
I

Consequently, the reflection coefficient at the beginning of the line
is determined by the ratio between the input impedance of the line Z;,
and its wave impedance Z,,,.

Integration constants A;, A, can be determined by the voltage U,
and current [, at the end of the line. We substitute in the expression
(8.8) x =L:

ul) =0, = Ale"’l + A,e?;
4y

’ ZW Zy
Now
A, = %ew;& _ we—n
Then, in accordance with the expressmn (8.19)
IZZ it . -
plx) = py(x) = We 2U=0) = p,eV*, (8.24)
2 2

where p, — reflection coefficient at the end of the line; x' =1—x —
distance deduced from the end of the line
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o Ly
:UZ_IZZw_iz W:ZI_ZW
Uz'l‘izzw Zl+ZW .

P2 (8.25)

Uiyg,
I,

Thus, the reflection coefficient at the end of the line p, is
determined by its relation between the load resistance of the line Z; and
its wave impedance Z,,,.

From the formulas (8.22) and (8.24) we find the module of the
coefficient of reflection

Mod[p(x)] = MOd[Plez(a+jB)x] = pe?™ =
(8.26)
Mod[pze—z(aﬂﬁ)x’] — pze—Zax’_

From expression (8.26) it is seen that the reflection coefficient
module smoothly increases with height x and reaches the highest value
at the end of the line (x = [):

pmax(x) = p1€ = pP2.

For the lossless line (8.15), the reflection coefficient module retains

the same value at all cross sections of the line
) P =p1= P2

The voltage U(x) and current I(x) at any intersection of the line
can be expressed through voltage U,, current [; and reflection
coefficient p; at the beginning of the line.

From formulas (8.8) and (8.21) we find
U+ 1Lz

2al

Ul - ilzw

Ux) = Yemvx 4 Te?x. (8.27)
From expression (8.23) we obtain
o . . 1—pq .
prUs + prhiZy = Uy = hZys 512y ==V (8.28)
P1

We substitute expression (8.28) into formula (8.27). We have:
) L P e e & U
U(x)=§[U1(e +e )+1+p1U1(e —e )]=
1 . ) .
= ——(2U,e7"* 4+ 2U p1e77*) = 8.29
2.(1 n pl).( 1€ | 1P1f3 ) ( )
e "+ per* . e "+ per*.
= 1= Ilzw
1+p1 1-=p1
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We obtain from formulas (8. 8) and (8.21) :

Ul + 11 . U1 - ilzw .
[ =2 Wemrv LWk (g,
(%) 27, e 27, e (8.30)
From the expressions (8.28) We obtain
L1+ P1
U, = T Ilz (8.31)
We substitute expression (8.31) into formula (8.30)
I(x) =
1 1/1+p. i 14+p
:E[(l—p 112 +Ilz )e rx (1_ 112 Il )eyx]

(8.32)

e VX —peV* . eV —peV¥
= T 1 = N U1_
1-py (1 +p1)Zy, _ ‘
From the expressions (8.29) and (8.32), by x' =1 —x, U; = U,,
I, = I, having put we have formulas for currents and and voltages
depending on, x' ie, when countmg the dlstance from the end of the line

!

eV 4 e 7% eVx' — e V%
U(x) = P2 ) = P28 T j 7 (833)
_1,+ P2 » }—Pz
. eV* —p,e V¥ | eV — 5 e vx
i(x) = P2 i, = Pz U,.  (8.34)

1-p, 2 1+ p2)Zy,

8.4. Wave modes

Mode of running waves. If the reflection coefficient p(x) is zero,
then the reflected wave will not be left, only the incident wave will
remain. This is possible with formula (8.24) when | = oo, the incident
wave does not reach the end of the line, and therefore can not be
reflected.

The mode of running waves also arises in a coordinated mode, if
7 =27,.

Then in the formula (8.25) p, =0 and in the formula (8.24)
p(x) = 0. In the absence of a reflected wave (Uyer (x) = 0, Lor(x) =
0) in the line remain only falling waves:
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U(x) = Uor(x) = Are7%;
() = I () = Fre 7%,
Obviously, by the equation (8.20)
Then we have in the formula (8.35)
U(x) = Uje ™ 7* = [,Z,,e77*;

(8.35)

. U, .. . .
I(x) = 7 € YX = Le %
w

That is, in running wave mode the amplitudes of the voltage and
current exponentially decreases with height x. For the loss-free line
(a = 0) the amplitudes of the voltage and current remain unchanged in
all sections of the LL.

In running waves the input impedance Z,, is equal to the wave
impedance according to equation (7.36)

%
le = 0= ZW'
Iy
In running wave modes energy is transmitted only in one direction

— from the source to the load.

Standing wave mode. If Z; # Z,, then only part of the energy
transmitted by the incident wave is consumed by the load. The rest of
the energy in the form of a reflected wave goes back to the source. If
these energies are identical, a standing wave is established. Obviously
that

p(x) =1. (8.37)
From formula (8.24) we have
p(x) = ppe2o*,
Given the expression (8.37) we have
p,=1,a=0, (8.38)

that is, the mode of standing waves is set in a line without losses.
Given the value (8.38), we obtain from formula (8.25)
Z,=0;Z =o; Z, =1Im[Z],
that is the mode of standing waves is established in a line without losses
at short circuit or idling, as well as at a purely reactive load.
In the short circuit cuuutnt at the output (Z; = 0) according to the
formula (8.25) p, = p, = —1, ie the voltage of the incident and
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reflected waves at the end of the LL are identical in amplitude, but are
displaced by 180°. The instantaneous voltage output is zero.

For a current in accordance with expression (8.19)

pz2 = py = —1.

That is, the current of the incident and reflected waves at the end of
the LL is the same in amplitude and coincides in phase. The
instantaneous value of the current at the output is the maximum.

In the mode of standing waves, if a = 0, then by equations (8.9)
and (8.10)

= |z, =
Then, with a short circuit at the output (p, = —1) from the
expressions (8.33) and (8.34) we get
. ejﬁx’ — e_jﬂx,
U(x) =
) >
. eIBx" 4 o=iBx" .
I(x) = 3 I, = I, cos(Bx") =1, ch(jBx").
Because of instantaneous values

u(x,t) = [V2I,R,, sin(Bx")] cos (a)t + g) :
i(x,t) = [\/512 cos(ﬂx’)] cos(wt),

that is, with a short circuit current at the output the amplitude of the
voltage and current vary along the line according to the harmonic law:
{Um(x) = V2I;R,, sin(Bx"); (7:39)
L, (x) =21, cos(Bx").
The change in voltage U,,(x) and current I,,,(x) is shown in fig.
8.3, a, b respectively. Points on the axis x' (indicated by (*)), where the
amplitudes of the voltage or current are zero, are called nodes. Points
marked (Xx), where the amplitudes of the voltage and current are
maximal, - the antinode. The location of nodes and antinodes on the axis
x" in time does not change. The wave is "standing" in the pleace.
Therefore this mode is called standing wave mode.
From the above it is clear, that the nodes occur in those sections of
the LL, where the voltages or currents of the incident and reflected
waves are opposite to the phase and at the time of compilation give zero,

Zy Ry; v =JB.

jZRw = jisz Sin(ﬂx’);
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and the antinodes - in those sections, where the voltages or currents
coincide in phase and during compilation give maximum values.

In stationary waves, the active energy along the line is not
transmitted, only the energy exchange between the electric and magnetic
fields of LL occurs.

At idle of the output (p, = 1) of the equation (8.39) picks up

Up (x) = V2U, cos(Bx") ;
I,(x) = \/fg—zsin(ﬁx’).

In this case, at the end of the line there will be the voltage antinode
and the current node, the diagrams (Fig. 8.3) are shifted to the left or to
the right for a quarter of the wave length.

Antinodes Un()
DYUHJJ{M’
N S Tt ®
| l | } l
: | } | 1
| | | | |
| | | | |
c N
| I | 0
Immm' NOdeS Im(x)
|
|
|
x' I
SA A 3k A A
4 4 2 4
Fig. 8.3
If the load Impedance nce is purely reactive, then
Zl :jxl. (840)
We substitute expression (8.40) in (8.25) for a loss less line
jix; — R ;
P (841)
]X1 + Rw

where
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X
m—2arctg— x; > 0;
_ Rw
(ppz - X
- — 2 arcth— x <0.
w
Then the voltage and current of the line from equations (8.33) and

(8.34), using (8.41)

(=0, 1+ (2%): wospr =i
I1(x) =—I, /1 + (;—Vlv) sin(Bx' — @),

tg L
@ = arctg—.
Ry,

From expression (8.42) it can be seen that the amplitudes of voltage
and current vary along the line according to the harmonic law. The
points of the antinodes and the nodes of the voltage (Fig. 8.4, a) and
current (Fig. 8.4, b) are shifted relative to the corresponding points for
idle and short-circuit modes on [, = go%. At the end of the line there

are not nodes, and antinodes of voltage or current.

where

Fig. 8.4

Mixed wave mode. The mode of mixed waves occupies an
intermediate position between the modes of running and standing
waves. Energy at the end of the line, wich transmitted by the wave,
partially absorbed by the load and partly reflected. In this mode, the
amplitudes of the voltage (Fig. 8.5, a) and current (Fig. 8.5, b) in the
minima do not equal zero. The larger U,ymins Immin » the smaller the
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part of the energy is reflected from the load, and the stronger the mode
of mixed waves will be different from the regime of standing waves.

Un(x)
U

mnax

(]
mmin
0

IFH(x)

Limmx

[ mmin
0

Valua

Ummin _ Lymin

K5=

A Ummax Immax
is called runway wave ratio (CRW)

0<Ks <1.
If
{Ummin = Unfor T+ Umrefa
Unmax = Umgot — Umref-
Then, according to the expressions (8.19) and (8.43)
_ “mref
Ko — Umfol - Umref _ Umfol _ 1-pk)
® Unfot + Umrer 1+ Unrer 14 p(x)
mfol
Valua
1 1+px)

K = —
T Ks 1-p()
is called standing wave coefficient(CSW) oo > K, > 1.
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8.5. Transition processes in circles with distributed parameters

Let's consider the calculation of transient processes in circuit with
distributed parameters on the example of LL. The calculation of
transient processes is often reduced to the determination of the voltages
and currents in different sections of the LL. Consider, for example, the
distribution of voltages and currents in a homogeneous line without any
loss at any external influence.

Let the voltage in the input line u; =0 at t < 0, and when it
changes at t > 0 according to the law u4 (t), ie

uy (1) = 1(Ouy ().

Let there also be a coordinated mode in the line, that is, the load

impedance has an active resistance and is equal to the wave impedance

Ly
Zl = RW = C_1

We define the operator image of the voltage and current by
expressions (8.5), (8.6). Integration constants A4 (p) and A, (p) found at
the beginning conditions (x = 0) and at the end (x = 1) of the line:

U(0,p) =Uy(p); ULp) =I1(LDp)Ry (8.44)
By x = 0 and x = 1 we obtain from the expressions (8.5) and (8.6)
U(0,p) = A1 (p) + A2(p); (8.45)
U(Lp) = Ay (p)e P! + Ay (p)e? @ (8.46)
I(,p) = A;_(m e~ Y@ _ A;(p) YOI (8.47)

We substitute (8.44) inwthe expressionvsv (8.45) - (8.47)

Ai1(p) = Ui(p);  Ax(p) = 0.
Then, according to equations (8.5) and (8.6)
Ulx,p) = Ul(p)e‘V(p)xzyl(p)e—p,/Llclx;
I(x,p) = U;—(me‘V(P)lel(p)e—pw/Llclx’ (8.48)

since for a loss less line (R; = 0, G, = 0) in accordance with expression
(8.4)

y(p) = p/L1Cy.
In the system (8.48) I, (p) = 1(0,p) = 2&

— is the operator image
of the current at the input LL.
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Using the delay theorem, from the expression (8.48) we can
conclude that the voltage and current in an arbitrary intersection of LL
u(x, t), i(x, t) repeat the voltage and current at the beginning of the

delay line u4, i; for the period of time t, = /L;C;x = Ui for which
ph

the incident wave reaches the intersection x. The end of the line will
reach this wave after a period of time

l
to = Llcll = @
Let at the moment ¢t = 0 to input of the LL, opened at the end,
connect the voltage u,(t) = E. Then, by the equation (8.44)

E
Uo,p) = Ui(p) = > I(l,p) = 0. (8:49)

Substituting expressions (8.49) in the formula (8.45) - (8.47), we
get

(E
!5 = A1 (p) + A2 (p);

[Al_(me—y(p)l — 42(p) eY®L = 0.
w w
Where from
e—ZIY(P)
A(p) = Tt @y’ A, (p) = Tre @y (8.50)

From the formulas (8.5), (8.6) taking into account (8.50), we find:
e XY@ 4 o-CQl-X)Y(D) o~ Ptx } o~ PQRto—tx) |

Ux,p) = =TT IR s (8.51)
1) = e~ XY@ _ p-Ql-x)y(®) | _ e Ptx _ e—p(Zto—tx)I_O 0.5
P = 1+ e2v®) PRy, 1+ e~2pto p - (8:52)

We portray the sum of an infinitely complicated geometric
progression

———— =1—e %Pl 4 7Pl — p=6Plo 4 o8Pl — ... (8.53)
1+ e~2Pto '
Then from the expressions (8.51) and (8.52)

U(x’ p) = E [e_ptx + e_p(ZtO_tx) — e_p(2t0+tx) —

—e Plto—ty) 4 o=Plto+ty) 4 o=P(6to—tx) _ ... ]; (8.54)
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I(x,p) = 1_0 [e7Ptx — e P2lo—tz) _ o=P(2to+tx) 4

+e_p(4t0_tx) + e_p(4t0+tx) — e_p(6t0_tx) + ... ], (855)

ulx,t) = E[1(t —t,) + 1(t — 2ty + t,,) — 1(t — 2ty — t,) —
—1(t -4ty +t,) + 1(t — 4ty —t,) + 1(t — 6ty + t,) — -+ ]; (8.56)
i(x,t) =I[1(t —t,) = 1(t — 2ty + t,) — 1(t — 2ty — t,) +
+1(t — 4ty +t,) + 1(t — 4ty —t,) — 1(t — 6ty + t) — - ]. (8.57)
Expressions (8.56) and (8.57) show that the voltage and current at
an arbitrary intersection of a line x represent the sum of jumps, each of
which appears at the moment of arrival at this point of the incident or
reflected wave.

u i
2F

E—|_> 10—|_>

0

i
u
pES
E I,

(=]
=
o
—
=
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The first jump (Fig. 8.6, a) arises at the moment ¢, of entry into this
point of the incident wave (the first terms in the square brackets of the
equations (8.56) and (8.57)), the second jump - through the time interval
from the moment 2t, — t, the transition occurs, when the point x arrives
the wave, reflected from the load (the second terms in the square
brackets of the equations (8.56), (8.57)). The reflection coefficient of the
voltage at the end of the line is “+1”, and by the current “~1”, then the
reflected wave arrives, is summed by voltage and subtracted by current
(Fig. 8.6, b). The third jump occurs through the time interval from the
moment 2t, + t,, when the wave arrives at the point t = 0, reflected
from the source (third terms in square brackets) of the equations (8.56)
and (8.57). The reflection coefficient of the voltage at the input of the
line is equal to “—1”, and after the current “+1”. Thus, the reflected
wave from the input is subtracted by voltage and current (Fig. 8.6, c).

Here it should be borne in mind that the internal resistance of the
source is zero. The fourth jump arises due to the time 4t, — t,, when the
wave arrives at the point x, again reflected from the load (the fourth
plugs in the square brackets of the equations (8.56) and (8.57)).

If the coefficient of reflection at the end of the line, as indicated, is equal
to 1 at the current “—1”, then the reflected wave is subtracted from the
voltage and is added to the current (Fig. 8.6, d). This process is repeated
(Fig. 8.6, e). Thus, at the end of the line, the

current is always zero, and the voltage is 2E u

over a period of time 2t,, it is equal to zero 2E

for the same interval, that is, at the end of the E H H H |7
open LL with no loss the voltage has the

form of pulses (Fig.8.7). This property of the 0 £.3t.50769¢117. 1
LL segment can be used in pulse shaper T
circuits. Fig. 8.7

Similarly transient processes can be considered in the short-
circuited at the end of the line, which connects to the source of constant
voltage.

In this case, the reflection coefficients of the voltage from the
source of the input signal and at the end of the line are equal: “—1”, but
by current “41”. Therefore, at each reflection the voltage wave changes
the sign, and the current wave does not change. As a result, the voltage
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at the end of the line always remains zero, and the current continuously
increases. The successive stages of the transition process are shown in
(Fig. 8.8,a-c).

u i
2E
0 I x 0 JE
a
u i
0 I X 0 X
b
i
21

Fig. 8.8

In real lines with losses, the current in the line gradually
approaches the set value. For a loss less line, the current increases with
time along the stepped curve (Fig. 8, 9).

5E ;
3E
E
0 ¢ 3t 5t 7t 9t ¢
Fig. 8.9

Methodical instructions

In the section " Circles with Distributed Parameters " you need to
understand the basic difference between circuits with distributed
parameters from circuits with lumped parameters: the values of currents
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and voltages in circuits with distributed parameters within the allocated
sections of these circuits do not remain unchanged, but change for the
same the time from the intersection to the intersection. This feature is
represent telegraph equations, in which currents and voltages depend
not only on time but also on coordinates. Of course, there are no falling
and reflected waves in real LLs, these are only a convenient abstraction
for a clearer understanding of the processes in these circuits. This
abstraction is particularly useful in analyzing transient processes in LL.

Literatura: [2 — 4], [9], [16]

Questions for self-examination

1. What electrical circles are called circles with distributed
parameters?

2. Record the telegraph equations of DL.

3. What is the incident and reflected wave of voltage and current?

4. How is the phase velocity determined in DL?

5. What is the reflection coefficient?

6. What are the known modes of waves and under what conditions
they arise?

7. What is KTW and KSW?

8. Describe the transient process of current and voltage when
switching on the DL to a constant voltage.
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